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Abstract 

We consider a continuous-time Markov chain in which one cannot observe 
individual states but only which of two sets of states is occupied at any time. 
Furthermore, we suppose that the resolution of the recording apparatus is such that 
small sojourns, of duration less than a constant deadtime, cannot be observed. We 
obtain some results concerning the poles of the Laplace transform of the probability 
density function of apparent occupancy times, which correspond to a problem about 

generalised eigenvalues and eigenvectors. These results provide useful asymptotic 
approximations to the probability density of occupancy times. A numerical example 
modelling a calcium-activated potassium channel is given. Some generalisations to 
the case of random deadtimes complete the paper. 
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1. Introduction 

Our basic model is a continuous-time finite-state Markov process, X(t), in which 
the rate constants for transitions between states i and j (i =j) are the elements, qij, 
of the transition rate matrix Q. The diagonal elements, qi, are defined so that the 
rows sum to 0, so -1/qi is the mean lifetime of a sojourn in state i. 

We suppose the states are divided into just two mutually exclusive subsets, 
denoted d and ,F and that we are unable to observe the occupancy of individual 
states but, at any time, all we can say is that the system is in the set S or in the set 
9. In the context of modelling ion channels in biological membranes, see 
Colquhoun and Hawkes (1982), subset s corresponds to the channel being open, 
and a current flow being observed, while subset F corresponds to the channel being 
shut. We suppose that k. is the number of d states and kF the number of F states, 
so kj + ks = k is the total number of states, then the Q-matrix may be partitioned 
as 

Q Q. Qs' 
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In practice this may be complicated by the resolution of the recording equipment, 
leading to an inability to detect very small intervals. We shall model this by 
supposing a constant critical gap or deadtime, r, such that occupancies of either 
subset s or subset F of duration less than this time are missed. We suppose, after 

Colquhoun and Sigworth (1983), that an observable d-occupancy begins with a 

sojourn in the d states of duration at least T and ends at the beginning of the next 

sojourn in F of duration greater than T. Thus, the observed occupancy may consist 
of r sojourns in the set of , states, each of duration less than r, and r + 1 sojourns 
in the set of s states, of which the first must exceed r. Observed i-occupancies 
may be defined similarly. 

Following Ball and Sansom (1988), we consider a semi-Markov process whose 
events occur at time r after the start of observed occupancies. An event type is the 
state of the underlying Markov process which is occupied at that time. The durations 
of the intervals between events, which we call esd and e9 intervals, are identical to 
the durations of the observed s-occupancies and i-occupancies. Any such 

duration, T say, is necessarily greater than r, so it will often be convenient to 
consider the excess duration U = T - T. The definitions are illustrated in Figure 1.1. 

Intervals of this process will be alternately of type eds and eoP, so the 
semi-Markov transition densities will be given by a matrix of the form 

eG(t) = eGS(t) t 

with Laplace transform 

G*(s)= eG (s) 0 ] 

observed 4-occupancy 

interval es~ interval 

T T 

excess e,g-occupancy 

Figure 1.1. Illustration of the definition of an observed i-occupancy and excess s-occupancy. The es 
interval is equivalent to an observed s-occupancy shifted by an amount r. The events of the 

semi-Markov process defined in the text occur at points marked t 
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The Markov chain embedded at the event points has transition matrix 

=[G0 eG] 

eG ea ] 

Here we simplify the notation when setting s = 0 in a Laplace transform by omitting 
the asterisk and the argument: for example, in this case eG^(O) is written as eGtj. 

By looking only at alternate events, and ignoring the interval durations, we have a 
Markov chain on the s states with transition matrix eG_eGg and equilibrium 
probability vector 4p, satisfying 

0b = q9?eGaeGC aG1 , q t up = 1, 

where ua is a column vector whose elements are all equal to 1. 
We also discuss the probability density of observed si-occupancies; the distribu- 

tion of observed i-occupancies can be obtained simply by interchanging S and s in 
the notation. Let mR(t) be a matrix whose ijth element (i, j E i) is 

'Rij(t) = P[X(t) =j and no i-sojourn is detected over (0, t) I X(0) = i], 

where a detectable i-sojourn is a sojourn in , of duration greater than T. This is a 
kind of reliability or survivor function: it gives the probability that an esd interval, 
starting in state i, has not yet finished after time t and is currently in state j. Then 
the transition density is given by 

(1.1) eGps(t) = wR(t - r)Qs exp (Q,r). 

This is because, for the es interval to end at time t, there must be a transition from 
d to , at time t - r (there being no detectable i-sojourn up to that time) followed 

by a sojourn of at least r in 9. 
eG g(t) is a most important function as it enables one to write down a likelihood 

for an observed record, see Section 6 of Hawkes et al. (1990), and because the 
probability density of observed s-occupancies is given by 

(1.2) efT(t) = pt>eGCG t)u-. 

The excess si-occupancy U = T - r and so the p.d.f. efT(t) =f(t - r) and thus 

(1.3) fu(t) = (et eGi(t + Z)us = 4p9R(t)Q~ exp (QFr)u). 

It follows that "R(t) is the key to the problem. Hawkes et al. (1990) show that its 
Laplace transform can be written as 

(1.4) 'R*(s) = {I - G.(s)S3 (s)GS (s)} -s- - Q_ )-1 

where G3(s) = (sl - Q Q)-l ,GG G () = ( = (- Qgg')-'Q and Sbg(s) is de- 
fined by 

f e-t exp (Q.,t) dt = {I - exp (-(sI - Q)r)}(sI - Q )- 

= SS(s)(sI -Q )-1. 
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Substituting these into (1.4) yields the alternative expression 

(1.5) R *(s) = [sl- Q - Q ( exp (-st) exp (Qgt) dt)Qe . 

These results were given, using different notation, by Ball and Sansom (1988), 
generalised to allow different critical intervals, Tr and tr which could be random 
variables. 

Hawkes et al. (1990) obtained the inverse of this transform, and hence the p.d.f. 
fu(t) in a form such that, for t in the interval In,, =(n-r, (n + 1)r), fu(t)= 
Ek=l Oin(t) exp(-Ait), where Oin(t) is a matrix polynomial of degree n in t and 
Ai 2, ' , ' A,k are the eigenvalues of -Q. Formulae for the recursive computation 
of the coefficient matrices of the polynomials Oin(t) were also given. Thus, there is 
no simple functional form, but a different form over each of the intervals In. 
Unfortunately, the number of terms, and their complexity, increase as n increases. 

However, we may hope for some good approximation by a simple form for large 
t. In this paper we show that the density fu(t) is asymptotically exponential in form. 
We also show that, if the transition matrix Q is reversible, 'R*(s) has exactly k real 
poles which lead to an approximate expression for fu(t) as a linear combination of 
exponentials which is, in practice, very good for all except small values of t. For 
those values of t, the exact density mentioned above is simple and accurate to 
compute. 

2. Roots of a determinantal equation 

From Equation (1.5) we see that the asymptotic behaviour of 'R(t), and hence of 
fu(t), depends on the values of s which render singular the matrix defined as 
W(s) = sI- H(s), where 

(2.1) H(s) = Q + Q. (J exp (-st) exp (QO t) dt) Q , 

or, if s is not an eigenvalue of QF, 

(2.1a) H(s) = QO + QO (sI - QF)-1(I - exp (-(sI - QO)r))QO . 

In other words, we are interested in the roots of the determinantal equation 

(2.2) det W(s)= O. 

In this section we prove two results. First we prove an analogue of the 
Perron-Frobenius theorem. Next we show that, if Q corresponds to a reversible 
process, the above equation has exactly kj real roots, where ka is the number of 
states in sd. 

Let Ai(s), i = 1, , kj, be the eigenvalues of H(s). These are continuous 
functions of s; for complex s they are even analytic functions of sl/m for some 
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m ' k, see Lancaster (1969), p. 237. Clearly, s, is a root of (2.2) if and only if 
sl - H(sn) is singular, i.e. if and only if s, is an eigenvalue of H(sn), or s, = Ai(Sn) 
for some i. Thus the real roots of Equation (2.2) are exactly the points of 
intersection of the graphs Ai(s), as functions of real s when the function is also real, 
with the diagonal straight-line function s through the origin. Corresponding to any 
such point n,, real or complex, there will be column and row vectors such that 

vW(s) = W(Sn)u =0, which are obviously eigenvectors of H(sn). We call such 
vectors p-eigenvectors (p for pseudo). 

It is useful here to establish a couple of results on maximal eigenvalues and ML 
matrices. 

Lemma 2.1. Denote by A+ the matrix whose elements are the moduli of the 
elements of the square matrix A and let Amax(A) be the eigenvalue of A with largest 
absolute value. Then for any non-negative matrix P with A+ P elementwise, 

max,(P) is real and non-negative (positive if all elements of P are strictly positive) 
and IAmax(A)l < Amax(P). If A is irreducible and there is at least one pair of indices 
i, j such that laijl < P1', then lAmax(A) < imax(P). 

These results are due to Frobenius; see Ostrowski (1964), pp. 81-83 and Taussky 
(1964), pp. 127-128. 

Definition. An ML (Metzler-Leontief) matrix is a matrix, M say, such that all the 
elements of MIq + M are positive for some constant /. 

Lemma 2.2. Let M be an ML matrix and let Ai(M) be the real eigenvalue of M 
which is greater than the real part of every other eigenvalue of M. Then there exists 
a real number aM such that, Vb > aM, b + A1(M) is the eigenvalue with maximum 
modulus among all the eigenvalues of bI + M. 

Corollary. If M1 and M2 are ML matrices with M1 <M2 elementwise, then 

A1(M1) A1(M2). The eigenvalue inequality is strict if M1 is irreducible and the 
matrix inequality is strict for at least one element. 

Proof. The existence of a real eigenvalue with the stated property follows from 
Theorem 2.5 of Seneta (1973). Let A =x + iy be any other eigenvalue. Then 

A1(M) >x and, for any real b, b + A = (b + x) + iy is an eigenvalue of bl + M and 
has smaller modulus than b + Ai(M) if (b + A1(M))2> (b + )2 + y2, that is if 
b > (x2 + y2_ 2l1(M))/2(A1(M) - x). Thus b + A1(M) is the eigenvalue of maximum 
modulus of bI + M for all b > aM = max,A() {(1A12 - A2(M))/2(Ai(M) - Re A)}. 

To prove the corollary we take b large enough so that all the elements of both 
bI + M1 and bl + M2 are positive and also b > max {aM, aM2}. Then b + Ai(Mi) are 
the eigenvalues of bI + Mi of maximal modulus and so, by Lemma 2.1, they satisfy 
lb + A1(Ml)l = lb + A1(M2)I and are also real and positive: hence b + A1(M1) < b + 
A1(M2) and, therefore, also A1(M1) _ A1(M2). 

We are now ready to state the first of our theorems. 
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Theorem 2.1. If H(s) is irreducible, det W(s)=0 always has a simple real root 

Sl <0 which is greater than the real part of any other root. This is the point of 
intersection of the strictly decreasing function Ai(s), defined as the largest real root 
of H(s) for real s, with the diagonal line s through the origin. Corresponding to this 
there are unique left and right p-eigenvectors which are non-negative. 

Proof. Obviously, H(s) is an ML matrix for real s. If it is also irreducible, then it 
follows, from Theorem 2.5 of Seneta (1973), that there exists a real eigenvalue of 

H(s), namely AI(s), which is simple and is greater than the real part of every other 

eigenvalue. To this eigenvalue there correspond non-negative left and right 
eigenvectors which are unique up to a scalar multiplier. Note that the irreducibility 
condition is not a serious restriction, because the results can still be obtained by a 

continuity argument. 
As s varies from -oo to oo, A1(s) varies from oo to Pl, the eigenvalue of Qj with 

largest real part. Moreover, A1(s) is strictly decreasing: this follows from the 

corollary to Lemma 2.1 because, for real sl < 2, it is easy to see that H(s2) < H(s1) 
with strict inequality for at least one element. Consequently A1(s) intersects the 
diagonal line only once, see Figure 2.1, at the point si > p, which is therefore a 

simple root of our equation, and the corresponding left and right p-eigenvectors can 
be chosen to be non-negative. As all other real Ak(s), k : 1, lie below Ai(s), s, is the 
largest real root of det W(s) = 0. 

ih,~~~~~~~~~~~~n (in) 

? infinite 

? finite 

Figure 2.1. Graphs of Al(s) for finite r and for r = oo 

307 



ASSAD JALALI AND ALAN G. HAWKES 

Now suppose s is a non-real root of det W(s) =0, with Res = u, then s is an 

eigenvalue of H(s) and therefore b + s is an eigenvalue of bl + H(s). Choose b large 
enough so that bl + Q~ is non-negative and, see Lemma 2.2, so that b + l(u) = 
imax(bl + H(u)). Then, elementwise, 

(bI + H(s))+ bl + Q0i + Q2 f [exp (-(sI - Qsw)t)]+ dtQs 
fo 

=bl + Qd + Q I exp (-(ul - Q )t) dtQg 

=bI + H(u). 

Then, by Lemma 2.1, b + u < lb + sI lAmax(bl + H(s))l A,max(bl + H(u)) = b + 

A1(u) and so u < Al(u). But this implies that Re s = u < S, see Figure 2.1. 
Now consider different values of the deadtime Tr < T2. It is easy to see that, for 

any real s, H(s, Tx) _ H(s, r2) elementwise, with strict inequality for at least one 
element. Then the same arguments as used above imply that A1(s, T) < Ai(s, T2), 
and so s1(rl) <s1(r2) and, therefore, 1(Tr)<Sl(oo) for all finite r. But H(0, oo)= 
Q_-~ Q^Q^Q^- is an ML matrix whose rows sum to 0, being the Q-matrix of a 
Markov process obtained from the original Markov process by stopping the clock 
whenever the system is not in the set of states i, so it is well known that the root 
with maximum real part is A = 0, see for example Cox and Miller (1965), p. 184. 
Thus s1(oo) = 0 and so s, < 0 for all finite r. This completes the proof of the theorem. 

Our second theorem concerns reversible processes, which are of great interest in 

many physical problems, including the modelling of ion channel currents (Colqu- 
houn and Hawkes (1982)). 

Theorem 2.2. When Q is reversible, det W(s) = 0 has exactly k. real roots (taking 
the multiplicity into account). Order the roots so that Sl > s2 >Sk, and let 

P1iP2* *' - pk be the eigenvalues of Qa and ,U = 0 > 2* * .> the 

eigenvalues of Q, then Pi - si < li for i = 1, . * , kj. 

Proof. As Q is reversible there is a symmetric matrix Q = H1QII-2, where the 

diagonal matrix II = diag (i7r, * * , ;,k) contains the equilibrium probabilities, Fred- 
kin et al. (1985). Clearly Q and Q have the same eigenvalues. Let the matrices Q 
and W be partitioned the same way as Q and define W(s) = sl - H(s), where 

H(s) = Q. + QsjS oexp (-(sl- Q,)t) dtQe. Clearly, W(s) = tiW(s)nIt 
and H(s) = flsH(s)nHT so H(s) and H(s) have the same eigenvalues and the 

equations det W(s) =0 and det W(s) =0 have the same roots. Now H(s) is 

symmetric so that, for real s, A1(s) > A2(s) 
' * * * > k(s) are real graphs, see 

Bellman (1970), p. 35. Similarly, the eigenvalues of Q,, are real and so the 

eigenvalues of exp (Q~t), which are exponentials of t times the eigenvalues of 
Q53, are positive: thus exp (Qgyt) is positive definite for all t, see Bellman (1970), 
p. 54. 
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Now let s1 < S2 and consider 

H(sl) - H(s2) = Qj, exp (Q(t)(exp (-s,t) - exp (-s2t) dtQ( . 

As exp (-st) - exp(-s2t) >0, the above integral, which we denote by 3, is 

positive definite. Thus for any vector v 0 let w = Qjv, and note that Q = 
(Q^, then we have vT Q( Q v = wT!Qw ?O. Thus H(sl) = H(s2) + 4Q(^ Q3, 
where the final term is non-negative definite. Hence a well-known result in matrix 

theory, see e.g. Bellman (1970), p. 117, Theorem 3, tells us that Ai(sl) > Ai(s2) for 
all i = 1, * , km. This means that each graph Ai(s), i = 1, * * , km, is a decreasing 
function of s and therefore cuts the diagonal graph s exactly once. Hence 
det W(s) = 0 has exactly k, roots. This establishes the main part of the theorem. 

Now if we consider different deadtimes Tr < r2, essentially the same argument as 
that used above implies that Ai(s, T1) _ Ai(s, r2) and therefore Ai(s, T) Ai(s, oo) for 

any finite T. But, as we have seen, the root si(r) of det W(s, r) = 0 is the intersection 
of the graph Ai(s, T) with the diagonal line s, so si = si(r) - si(oo). But W(s, oo) = 

(sl - QS) - Qs(sI - Q )-'Q and thus det (sl - Q) = det (SI - Q,) x 
det W(s, oo), see for example Morrison (1967), Section 2.11. Therefore, the roots of 

detW(s, oo) = 0 are among the eigenvalues of Q so that, for any finite T, 
Si = si(r) < -i. When s -> oo, H(s)--> Qd and so the eigenvalues Ai(s) - pi. As Ai(s) 
is decreasing, the root si _ pi. This completes the proof of the theorem. 

Irreversible processes. As we have already said, the case where Q corresponds to 
a reversible process is important in ion channel modelling. However, it is of interest 
to see what happens to our results if this does not hold. Below we give an example 
of an irreversible process which may have more or less than k, roots. 

Consider a Markov process in which d and F each consist of two states. The 
Q-matrix is partitioned as 

A 0 A 0 

(2.3)... ... .... 
-0 _ 0 

Y 0: 0 

It is clear from the graphical representation, Figure 2.2, that this is irreversible. 
Then 

H(s)=( 0 
:+f(S)0 A,) 

where 

(2.4) f(s) = exp (-(s + ,)t) dt = (1 - exp (-(s + !s)r))/(s + s). 

309 



ASSAD JALALI AND ALAN G. HAWKES 

A F1O > [3] 9 

A 

Figure 2.2. State diagram of an irreversible process, with two states in each of the subsets ds and i, 
whose Q-matrix is given by Equation (2.3) 

Then 

(2.5) A,(s) = -A + AMf(s), A2(s) = -A - ALf(s), 

and so 

A.(s) = -A(s) = -Ai t exp (-(s + /)t) dt, 

'(s) = -A(s) = A t2 exp (-(s + /)t) dt. 

Hence, A'(s) is decreasing, as expected from Theorem 2.1, convex and meets the 
diagonal graph s in one point. Ai(s) is increasing and concave, so it may intersect the 

diagonal in two points or in none, see Figure 2.3. Therefore, det W(s) = 0 has three 
real roots in the case of Figure 2.3a and only one real root in the case of Figure 
2.3b. Our example shows that when Q is not reversible, the equation det W(s) = 0 
may have more or less than kf real roots. 

Complex roots. In this paper we deal exclusively with real roots. For the two-state 
case, with one d state and one F state, Jalali and Hawkes (1992) found that, in 
addition to the one real root expected, there are infinitely many complex conjugate 
pairs of roots. It is almost certainly also the case in the more general situation 
studied here. However, it is much more difficult to deal with them in general and the 
results to be presented in the next section make use of the real roots only. They 
appear to be adequate for practical purposes. 

3. Asymptotic distributions 

Our main concern in this paper is to obtain good approximations for "R(t) for 

large t, and hence obtain similar approximations for the transition density matrix 
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A (s) 

A 2 s) 

(a) 

x (s) 

2(s) 

Figure 2.3. Graphs of A,(s) and 
Equation (2.3), with t =0-2 and 

(b) 

A2(s) given by Equations (2.4), (2.5) for the irreversible model of 
u = 5. In (a), when A = 8.75/e, there are three roots; in (b), with 

A = 12-5/e, there is just one 
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eG^j(t) from Equation (1.1) and for the density fu(t) from Equation (1.3). It 
follows from Theorem 2.1 that, as t->oo, "R(t) -the residue of exp(st)IR*(s) at 
s = s1, the real root which exceeds the real part of any other root of det W(s) = 0, 
see for instance Smith (1966), Chapter 10. As s, is a simple root, we have a simple 
pole and so asymptotically "R(t) has an exponential form exp (slt)M where the 
matrix M is the residue of 4R*(s) at sl. The form of this matrix is given in the 
following theorem. 

Theorem 3.1. If H(s) is irreducible, then asymptotically ~R(t)- 
exp (slt)clrl/rlW'(sl)cl where cl, r1 are the right (column) and left (row) eigenvec- 
tors of H(sl) corresponding to eigenvalue sl. 

Proof. First note that 

(3.1) W(s,)cl = (s,I - H(s,))cl = 0 = r1(s,1 - H(s1)) = r,W(sl), 

so that c1, r1 are also right and left eigenvectors of W(s1) corresponding to the zero 
eigenvalue. We may normalise in the usual way, so that 

(3.2) r1c, = 1. 

Let W(s) be the adjoint matrix of W(s), then 

(3.3) W(s)W(s) = W(s)W(s) = I det W(s) 

and 

W-(s) = W(s)/det W(s). 

As s, is a simple root of det W(s) = O, W(s1) has rank n - 1 and W(s1) has rank 1, 
so that we have 

W(s) = Cc,r, 

for some scalar constant C. Then the residue of "R(s) at s = s is given by 

(3.4) M = lim (s - s,l)R*(s) = lim (s - s1)W '(s) = Cc1r, (d det W(s) 
s--S1 S-.Si S s =si 

But differentiating Equation (3.3) yields 

I- det W(s) = W'(s)W(s) + W(s)W'(s). ds 

If we multiply this by r1 on the left and cl on the right, substitute s = s1, and make 
use of Equations (3.1) and (3.2), we get 

(- det W(s)) = rW'(s1)Ccl. 

Substitution of this into Equation (3.4) gives the required result. 
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This result is related also to the fact that, if r/i(s) is an eigenvalue of W(s), then 

1i(sl) = r1W'(sl)ci, see Lancaster (1969), p. 224. 
Note that the result is independent of the scaling of the eigenvectors. 
If Q is reversible we can obtain an improved approximation for "R(t), as follows. 

Theorem 3.2. If Q is irreducible and reversible and the k, roots of det W(s) = 0 
are distinct, then, as t- oo, 

k5? 

R(t) ~ - exp (sit)ciri/riW'(si)ci 
i=1 

where ci, ri are the right (column) and left (row) eigenvectors of H(si) corresponding 
to eigenvalue si. 

Proof. If Q is irreducible and reversible, then Theorem 2.2 guarantees that there 
are exactly k, real roots si of det W(s) = 0. If these are all distinct they will all 

correspond to simple poles and the residues can be found in the same manner as for 

sl, as outlined in Theorem 3.1. As s, is the largest root, the expression given above 
is asymptotically equivalent to that in Theorem 2.1: this theorem is therefore 

trivially true. 

However, our claim that the result given in Theorem 3.2 is a much better 

approximation to "R(t) than the simple form of Theorem 3.1 is based on the fact 
that under certain conditions 'R(t) is equal to the sum of the residues of all the 

poles of exp (st)'R*(s), see Smith (1966), Chapter 4. The result given here contains 

just the real ones. 
Jalali and Hawkes (1992) show that this is certainly the case for the two-state 

model with just one d-state and one i-state, and that there are infinitely many 
complex-conjugate pairs of poles, apart from the single real root s1. This leads to a 
series of damped oscillations in addition to the asymptotic exponential so that, in the 
two-state case, 

'R(t) = w, exp (s,t) + 2 E cn exp (Ont) cos (cOnt + n), 
n=2 

where Sn = an + iwn,. 

We conjecture that the same form holds for the general reversible case but with 

km real exponentials, corresponding to the form in Theorem 3.2, in addition to 

infinitely many complex ones. The result, however, is rather more difficult to prove 
and the complex roots more difficult to find. We have found that in practice, in 
numerical examples, Theorem 3.2 does indeed give us an improved approximation 
to 'R(t), compared to Theorem 3.1, over a wide range of t. 

Finding the roots and eigenvectors. In order to implement the above results in 

practice we need to be able to find the real roots and the corresponding 
eigenvectors. We have used two methods which, between them, have proved 
satisfactory. 
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Newton-Raphson. If F(x) is a vector of n functions FT(x)=(fi(x),f2(x),-., 
fn(x)), where x is itself a vector of n variables xT =(x1, x2, ..,n), 
then we have the iteration Xr+i = Xr- F'(xr)-F(Xr) for solving the set of equations 
F(x) = , where the Jacobian is F'(x) = (af/axj). In our case we take xT = (cT, s) 
and let F(x) = 0 be the set of equations W(s)c = 0 together with the normalisation 
uc- 1 = 0, where u is a vector of ones. Then 

F'(s)= (s)uT 
W (s) 

and, after some algebra, we get 

Cr+i = 
(UTw-1(Sr)WI(Sr)Cr)-'W-l(Sr)WI(Sr)Cr 

Sr+1 = Sr - 
(UTW-1(Sr)WI(Sr)Cr)-1 

Once a root s has been found, the left eigenvalue can be found as a solution to 

rW(s) = O, ru = 1. This is just like the equations for finding an equilibrium vector of 
a Q-matrix and can be solved in a similar manner, see for example Hawkes and 

Sykes (1990). 
As usual, the Newton-Raphson method either works very well or it fails, for 

instance if the required solution is a repulsion point. If that happens we use instead 
the following. 

Bisection method. One can make a rough plot of det W(s) as a function of real s 
and identify the roots approximately. Each of these can then be located precisely by 
a simple bisection method. Once an s has been found the left eigenvector can be 
found as above; the right eigenvector can be found in the same way, as its transpose 
satisfies cTWT(s) = 0, CTU = 1. 

4. Numerical example 

For illustration we apply the foregoing theory to the following example first 
introduced by Magleby and Pallota (1983) as a model of a calcium-activated 

potassium channel, and further considered by Blatz and Magleby (1986), Crouzy 

Figure 4.1. State diagram of a model of a calcium-activated potassium channel with two s states and 
three $ states, corresponding to a channel being open or shut. The Q-matrix of transition rates is given in 

Equation (4.1) 
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and Sigworth (1990) and Hawkes et al. (1990). There are five states, of which 
= (1, 2) correspond to the channel being open and the remaining three states, 
= (3, 4, 5), to the channel being closed. The model is illustrated in Figure 4.1. The 

deadtime is T = 0-15 ms and the Q-matrix is 

-0-322 0 0-322 0 0 

0 -2-86 0 2-86 0 
***-4 . . .1 ...... ... ...... ??......... ......? - - 

(4.1) =[ 3-95 0 4-4.55 06 0 

0 0-12 0-285 -0-585 0-18 

0 0 0 0-034 -0-034 

partitioned into the two sets. The rates are given as events per ms. 
We have expressed the roots si as time constants - = -1/si. Then the asymptotic 

p.d.f. of excess ed-occupancies can be calculated approximately from Equation 
(1.3) and Theorem 3.2 as 

(4.2) fu(t) 0 , (ai/li) exp (-t/li). 

ai can be thought of as the 'area' contributed by the component with time constant 

pi, although it is not necessarily positive. Results for excess i-occupancies are 
obtained by interchanging the roles of M and S. The time constants and areas are 

given in Table 4.1. Note that we are interested in the asymptotic behaviour of the 

probability densities, not in an approximation to the whole distribution. There is, 
therefore, no reason why the areas should sum to 1 although in this example, with 
the deadtime relatively small compared to the mean occupancy times, they very 
nearly do. It is interesting to observe that in this example the rate constants come 
out very close to those obtained in approximations by Blatz and Magleby and also 
those of Crouzy and Sigworth (1990), although the areas are somewhat different. 

The single exponential asymptotic p.d.f. and the double exponential asymptotic 
p.d.f. of excess es-occupancies are shown in Figure 4.2. The latter is visually 
indistinguishable from the exact p.d.f. as calculated by the method described in 
Section 1. Compared to the exact p.d.f., this asymptotic p.d.f. is in error by only 
0.72% at t = 0 and by less than 0-02% for all t > r = 0-15. The single exponential 

TABLE 4.1 
Time constants pi and areas ai for asymptotic probability densities of excess es-occupancies and 
excess er-occupancies, as expressed in Equation (4.2), for the model whose Q-matrix is given by 

Equation (4.1) and with deadtime r = 0-15 ms. 

mean (ms) area mean (ms) area mean (ms) area 

esM-occupancies 5-4961 0-9322 0-3573 0-0676 

eq-occupancies 46-9198 0-1135 1-9607 0-1988 0-2308 0-6849 
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0.1 

0 1 2 3 4 

Figure 4.2. Probability density of excess esd-occupancies above T = 0-15 ms for the model with transition 
rates given in Equation (4.1). The second asymptotic p.d.f. with two exponential components is shown as 
(-- ) and the asymptotic single exponential dashed (---). The second asymptotic p.d.f. with two 
exponential components is visually indistinguishable from the exact p.d.f. calculated by the methods of 

Section 1 

0 0.5 1.5 

Figure 4.3. Probability density of excess eS-occupancies above r = 0*15 ms for the model with transition 
rates given in Equation (4.1). The asymptotic p.d.f. with three exponential components, shown as ( ), 
is indistinguishable by eye from the exact p.d.f. The asymptotic p.d.f. with only two components, given 
by the two largest time constants in Table 4.1, is well below the exact curve up to t = 2, after which it is 

accurate to within 2%: it is shown dashed (---) 
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component, corresponding to the largest real root s1, is too low initially, but is in 
error by less than 0-6% for all t > 2. 

The double exponential asymptotic p.d.f. and the triple exponential asymptotic 
p.d.f. of excess eF-occupancies are shown in Figure 4.3. The latter is visually 
indistinguishable from the exact p.d.f. as calculated by the method described in 
Section 1. Compared to the exact p.d.f. this asymptotic p.d.f. is in error by 2-09% at 
t=0 and by less than 0-008% for all t> =0-15. The double exponential 
asymptotic p.d.f. using the largest two real roots, is much too low initially, but is in 
error by less than 2% for all t > 2. The single exponential component, corresponding 
to the largest real root sl, does not become effective in this case until way out in the 
tail of the distribution. 

This example shows that, if r is small compared to the mean occupancy times, the 

asymptotic p.d.f. may be very close to the exact p.d.f. for all t. For larger values of r 
this is not usually the case, but the asymptotic p.d.f. is very accurate for all t greater 
than two or three multiples of T in all realistic cases we have looked at. Our 
recommended procedure, therefore, is to compute the exact p.d.f. by the method of 
Section 1 for two or three multiples of r, in which range it is quite easy to calculate 
(and numerically stable). If the asymptotic p.d.f. agrees closely with this at the end 
of this range, then use the asymptotic form for all larger t. 

Further numerical examples are given in Hawkes et al. (1992). 

5. Non-constant deadtimes 

Ball and Sansom (1988) considered a more general situation in which the critical 
deadtime r, instead of being constant, is random. A sojourn in the 3 states is not 
detected if its duration is less than rT, a random variable distributed independently 
of the sojourn time and of the critical deadtime corresponding to any other sojourn. 
If this has a probability density whose Laplace transform is denoted by sJf(s), then 
the basic theory outlined in Section 1 remains except that we replace Equation (1.1) 
by a more general result which is better expressed in terms of the Laplace transform 

eG*(s) = 'R*(s)QS ft (sI - Q,) 

where, to generalise Equation (1.5), 

aR*(s) = [sI - Qs - Q(sl - QS-F I- f(sl- Q W)}Q }]-1 

This is equivalent to Theorem 3.1 of Ball and Sansom (1988). The previous 
expressions, corresponding to constant r, are obtained if we set the transform YJ(s) 

equal to exp (-st). Thus, as before, we are looking for the roots of det W(s) = 0, 
where W(s) = s - H(s), but now Equations (2.1) and (2.1a) are replaced by the 
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two alternative forms 

(5.1) H(s) = Q~ + Q(o exp (-(s - Q- Q)t)(1 - F,(t)) dt)Q , 

(5.la) H(s) = Qs + Q s(sI- Q)-1{I- `f*(sI- Q )}QS , 

where -F,(t) is the cumulative distribution of the critical F-deadtimes. 
What we have to be careful about is the fact that the integral in Equation (5.1) 

may not converge for all values of s, although the alternative form given by 
Equation (5.1a) may do so. However, if we restrict ourselves to values of s with 

sufficiently large real part for the integral to converge, the main arguments used in 
Theorem 2.1 still hold and a modified result can be stated as follows. 

Theorem 5.1. If H(s) is irreducible, det W(s) = 0 has always a simple real root s, 
which is greater than the real part of any other root. This is the largest point of 
intersection of Al(s), defined as the largest real root of H(s) for real s, with the 

diagonal line s through the origin. Corresponding to this there are unique left and 

right p-eigenvectors which are non-negative. 

Implicit in the statement of this theorem is the possibility that Ai(s) may intersect 
the diagonal line s more than once. This possibility is confirmed in the following 
example. 

Example. Consider a two-state model with S and 3 containing just one state 
each. Let Q= = - Q = a, Q^s = -Q = P and suppose that Tr has a negative 
exponential distribution with rate parameter y, so that if*(s)= y/(s + y). Now the 

integral in Equation (5.1a) has the form f exp(-(s + + y)t)dt, which is 

convergent if and only if Res > -(ac +13). However, the form given by Equation 
(5.1a) may still be written down as H(s) = -a+ c1/(s + + y) = A(s). For 
s > -(/3 + y) this is a decreasing function which tends to +oo as s - -(/3 + y) from 
the right. For s < -(,B + y) it is again decreasing, but this time from -ac to -oo as s 

goes from -oo to -(8 + y): this part, therefore, has a second intersection with the 

diagonal line s, see Figure 5.1. This is because the equation W(s) = s - H(s) = 0 is 

equivalent to the quadratic s2+ (a + ( + P y)s + cy=0, which clearly has two 

negative roots. 
The above problems can be avoided if W(s) has no poles, i.e. if the integral 

converges for the whole s-plane. Thus we shall assume that if*(s) is an entire 
function, which means that the p.d.f. of r, should fall off faster than any 
exponential. This would happen if the p.d.f. had finite support, which is quite 
natural to assume in the physical context postulated, as there must surely be an 

upper bound to the size of an interval which may be missed. We now state a 

generalisation of Theorem 2.2. 

Theorem 5.2. If the matrix Q is reversible, and if f *(s) is entire, then the real 
curves Ai(s), for i = 1 to kj and real s, are all decreasing functions tending to Pi as 
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_( $+7) < / s 
-( / 

Figure 5.1. Graph of A.(s) = -a[l - /(s + f + y)] for two-state model with transition rates rates a,, ( 
and exponentially distributed deadtimes with mean 1/y. There are two roots, one each side of the 

asymptote at s = -((3 + y) 

s --*. Hence each has a unique intersection with the diagonal line s and thus 
det W(s) = 0 has exactly kj real roots, allowing for possible multiplicity. 

The proof follows exactly that of the main part of Theorem 2.2. 

In the proof of Theorem 2.2 we argued that, for different constant deadtimes 
T1 < 2, s, i(S ) -(s, )i(, r2). Here the deadtimes are random, but essentially the 
same argument leads to the following theorem. 

Theorem 5.3. If rl, is stochastically less than r2~, i.e. the c.d.f. 'F,1(t)_ F2(t) 
for all t, then Ai(s, rl^) Ai(s, Tr2) for i = 1. If Q is reversible and Sf*,(s) and 
I2(s) are both entire, the result holds for all i = 1, * -, k_. 

Asymptotic densities. Under the conditions of Theorem 5.1 or Theorem 5.2, the 
results of Section 3 remain valid, so that 'R(t) and fT(t) can be represented 
asymptotically by one or more exponential terms. 

Another example. Consider a general model with Q-matrix partitioned as in 
Section 1 and suppose that the critical deadtimes are exponentially distributed with 
parameters yj and y,, respectively, for omitted s-intervals and omitted P- 
intervals. Then the process with omitted intervals is equivalent to a continuous-time 
Markov chain with an extra set of k si-states which are really i-states which have 
not been recognised as such (denote this set by dP for pseudo), and an extra set of 
k,j -states which are really s-states which have not been recognised as such 
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(denote the set by 3P). Then the modified sets are s' = s U siP and i' = F U 0P 
and the modified Q-matrix is 

d'/ Q. Qm : 0 0 

Q, Q^ ^- ^: 0 y 1I 
i' y3 I O * Q * 4 -Y 0I Q^ , 

0 0 Qe Q/s 

see Ball (1990). Note that the new process is not reversible even if the original one 
is. 

Then the standard theory of Colquhoun and Hawkes (1982) implies that 

eG (t)= [exp (Qe',,t)]~y, 

i.e. the sisP partition of exp (Q' .,,t) where 

- (Qsz Qs ; 
Q , \Q Q^- ysI 

Hence it is a linear combination of k negative exponential functions corresponding 
to the eigenvalues of Q',j,, which are all real and negative if Q is reversible. The 

previous example in this section is a special case of this model with k = kg = 1, 
which explains the two roots obtained in that case. 

This example illustrates that there may be more than k, real exponential 
components in the probability density of apparent i-sojourns if the assumption of 
entire functions does not hold. 
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