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Chapter 19 

Fitting and Statistical Analysis of Single
Channel Records 

DAVID COLQUHOUN and F. J. SIGWORTH 

1. Introduction 

The aims of analysis of single-channel records can be considered in two categories. The first 
is to allow one to observe results at leisure in order to determine their qualitative features. 
It may, for example, be found that the single-channel currents were not all of the same 
amplitude or that they showed obvious grouping into bursts or that artifacts appeared on the 
record that might be misleading. These effects are often not easy to see on the oscilloscope 
screen as an experiment proceeds. It is best to have a computer program that allows one, 
after the experiment, to scroll flexibly through the recorded data and zoom in on portions 
of the record to observe details at high time resolution. 

The second aim is to perform quantitative analyses of measurable variables (e.g., the 
channel-open durations), in which these quantities are compared with theoretical distributions, 
and to try to infer a biological mechanism from the result. Although other measurable 
variables can be studied, in this chapter we consider only the analysis of channel current 
amplitudes and dwell times. The current through a single channel is assumed to consist of 
rectangular pulses having one or a few discrete current levels and infinitely short transition 
times. The analysis procedures we describe involve, first, the estimation of the amplitudes 
and times of transition in the measured currents and, second, the fitting of distributions to 
these estimates. 

It is undoubtedly true that one of the disadvantages of recording from single ion channels 
is the length of time that it takes to analyze the results. One reason for this is that the 
quantities we measure, for example, the length of time for which a channel stays open, are 
random variables (as discussed in Chapter 18, this volume). In the simplest case of a quantity 
that has a simple exponential distribution with mean lifetime T, the standard deviation of an 
observation should be simply T (see, for example, Colquhoun, 1971; Chapter 18, this volume). 
Therefore, the standard deviation of the mean on n observations should be T/ Fn. (The usage 
of the terms standard deviation and standard error is discussed in section 6.7.1.) In order to 
find the mean lifetime with an accuracy of 10%, it is necessary to measure 100 or so 
individual lifetimes. In practice, it is advisable to measure many more events than this. The 
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main reason additional measurements are needed is that one can never be sure in advance 
of the shape of the distribution. It is very common for the distribution of observations not 
to be described by a single exponential distribution but by a mixture of two or three or more 
exponential terms. Indeed, under some circumstances, the distribution need not be described 
by a mixture of exponentials at all; for example, this is, strictly speaking, the case when the 
resolution of the observations is limited (see Section 12 of Chapter 18, this volume, and 
Section 6.11 below). It will rarely be satisfactory to measure fewer than 200 openings, and 
a few thousand openings will suffice for quite complex distributions if the time constants 
are well separated. For the evaluation of complex models, data sets with millions of events 
have been acquired and analyzed (e.g., McManus and Magleby, 1988). 

2. Acquiring Data 

2.1. Pulsed and Continuous Recordings 

Some experiments rely on the application of a stimulus to open the channels. A pulse 
of applied neurotransmitter or a membrane depolarization is given, and the resulting channel 
currents are measured. In order to obtain a sufficiently large number of events, sometimes 
hundreds or thousands of pulsed stimuli are presented. Such experiments are best performed 
using a computer both to control the application of the stimulus and to acquire data directly 
during an interval (perhaps a few tens or hundreds of milliseconds) surrounding the time of 
each stimulus. The resulting recorded data then consist of "sweeps" having a precise timing 
relationship to the stimulus. 

In other experiments the activity of channels is observed under steady-state conditions, 
for example, in the presence of a constant concentration of an agonist or a constant membrane 
potential. To obtain the maximum information from the experiment the data are best recorded 
continuously, for example, with an FM tape recorder, on digital audio tape, or with the 
combination of a PCM adapter and a videotape recorder. The decreasing costs of computer 
mass storage media (optical disks, digital tape drives) are making it practical to digitize the 
data and store it directly in the computer. This makes sense, since for analysis the data must 
be transferred to the computer eventually. 

2.2. Filtering the Data 

The filtering of the current-monitor signal from a patch-clamp amplifier is both unavoid
able and necessary for practical data analysis. The design of the patch-clamp amplifier places 
a limit on its frequency response (typically up to 100 kHz or so), so that its output signal 
can be considered a filtered version of the "true" (infinite bandwidth) current signal. Some 
filtering is also a necessary part of the data-recording process. FM tape recorders use filters 
to remove the FM carrier frequencies from the output signal. For the analogue-to-digital 
converters of digital tape recorders and computer data-acquisition systems, the signal must 
be first be filtered to avoid aliasing; the DAT and PCM systems designed for audio recording 
typically incorporate sharp-rolloff elliptic filters for this purpose, which strongly attenuate 
frequency components above 20 kHz. Finally, some filtering is required anyway for data 
analysis in order to reduce the background noise sufficiently to allow single-channel events 
to be detected and characterized. 
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The question of the optimum degree of filtering is discussed below (Section 3.2). The 
events of interest are rectangular, so it is undesirable to use a filter with a very sharp rolloff, 
such as a Butterworth or elliptic filter, because this sort of filter distorts a step input to produce 
an overshoot and "ringing" appearance (although this sort of filter would be appropriate if 
the single-channel records are to be used for calculation of a noise spectrum). Most commonly, 
a Bessel filter (four poles or more) is used. On some commercial active filter instruments, 
this sort of filter characteristic is sometimes referred to as damped mode or low Q. The 
cutoff frequency labeled on the front panel of the active filter is sometimes the frequency 
at which the high- and low-frequency asymptotes of the log-attenuation versus log-frequency 
graph intersect. For a Bessel filter, however, the frequency at which the attenuation is -3 
dB is about half of that value. This gives rise to an ambiguity in the specification of filtering 
that is used. It is desirable that the criterion used always be stated, and it is preferable that 
the cutofffrequency,!c, always be specified as the -3 dB frequency, as we do in this chapter. 

A useful theoretical model for a general-purpose filter is the Gaussian filter, which has 
a frequency response function B(j) of the form 

(1) 

where the constant k is chosen to give 3 dB of attenuation at!c; i.e., IB(fc)12 = 112, yielding 
k = In(2)/2!c2• 

Some of the useful properties' of the Gaussian filter arise from the fact that the Fourier 
transform of a Gaussian function is itself a Gaussian function. The inverse transform of 
equation 1 gives the filter's impulse response, which can be written in the same form as a 
Gaussian probability distribution: 

(2) 

where the width of the impulse response is characterized by O'g' which is analogous to the 
standard deviation of a probability distribution. Its value is inversely proportional to!c 

(3) 

Of special interest for single-channel analysis is the property that the frequency response 
of two Gaussian filters in cascade is itself Gaussian, with the effective cutoff frequency Ie 
given by 

1 I 1 -=-+-
fd fi Pi (4) 

where 11 and h are the cutoff frequencies of the two filters. This property allows repeated 
filtering to be done on the signal with predictable results. Because Gaussian digital filters 
are simple to program (see Appendix 3), it is possible to refilter data even after it has been 
digitized and stored in the computer. 

The response characteristic of a Bessel filter is well approximated by the Gaussian 
response, and the two actually become identical as the number of poles in the Bessel filter 
becomes large. Equation 4 is therefore useful for estimating the final bandwidth of an entire 
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recording system. A typical system might consist of a patch clamp with roughly Bessel 
response, a DAT recorder with sharp-cutoff elliptic filters in the recording and playback 
paths, and a Bessel filter to reduce the bandwidth before digitization by the computer. The 
contribution from the patch clamp and Bessel filter can be combined as in equation 4. To a 
first approximation, the effect of a sharp-cutoff filter can be neglected, provided its cutoff 
frequency is at least twice the!c of the rest of the system. * Thus, for example, a system with 
a lO-kHz Bessel filter in the patch clamp cascaded with a 5-kHz Bessel filter yields an 
effective bandwidth of 4.47 kHz; in this situation the presence of a DAT recorder with its 
sharp-cutoff 20-kHz filter would have essentially no effect on the final response. 

For theoretical work, the Gaussian filter is convenient because its impulse response and 
step response are relatively simple functions of time; the results in Sections 3 and 4 of this 
chapter have been computed for a Gaussian response for this reason. Some properties of the 
Gaussian filter can be summarized as follows. 

2.2.1. Properties of the Gaussian Filter 

The frequency response function of the Gaussian filter is given by equation lor, numeri
cally, 

B(j) = exp[ -0.3466(f//,Y] (5) 

The impulse response function (equation 2) can be written in terms of the cutoff frequency 
!c as 

h(t) = 3.011!c exp[ -(5.336 !ct)2] (6) 

The step response is 

H(t) = ~ [ 1 + e1211; aJ] 
1 = 2 [1 + erf(5.336 !ct)] (7) 

In modeling the response to single-channel current pulses, it is useful to know the peak 
output of the filter in response to a rectangular pulse of length wand unit amplitude, which is 

Ymax = e123~aJ = erf(2.668fcw) (8) 

*For Gaussian filters, each tenn in equation 4 is proportional to the second moment of the impulse response. 
Thus, the equation follows from the fact that when two functions are convolved, their second moments add. 
For sharp-cutoff filters, the second moment is approximately zero; indeed, for Butterworth filters, it is 
exactly zero. 
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The total noise variance of the output from the Gaussian filter when the input has a 
(one-sided) spectral density S(f) = So (1 + jljl + .flf22) is given by 

(J'~ = L'" I B(f)21 S(f)dj 

(9) 

where ao = 1.0645, al = 0.7214, and a2 = 0.7679. 

2.2.2. Risetime of the Filter 

A particularly useful descriptive parameter for a filter is the risetime, Tr • Roughly 
speaking, Tr is the time for the output of a filter to make a transition when a square step is 
applied to the input. It therefore corresponds to the minimum length of a pulse to which the 
filter gives a nearly full-amplitude response. One commonly used definition for the risetime 
is the time between the 10% and 90% amplitude points of the transition in the output of 
the filter, 

TIO- 90 = 2 312(J'gerr l(0.8) 

= 0.33961!c (10) 

The definition we use here sets Tr equal to the reciprocal of the slope at the midpoint of the 
response H(t) to a unit step input, 

which is given by 

Tr = [dH(t)]-1 
dt 1=0 

Tr = (21T)112(J' g 

= 0.33211!c 

(11) 

(12) 

For a Gaussian filter the two definitions of risetime give essentially identical values. Tr is 
inversely proportional to!c and a I-kHz Bessel or Gaussian filter has a risetime of about 
330 jJ.sec. It is often convenient to use Tr rather than!c to specify the amount of filtering 
(e.g., one can say that "openings longer than 2 Tr were fitted"). 

2.3. Digitizing the Data 

The data are always acquired, in the first place, in the form of a voltage (analog) signal; 
they are then converted to digital form for storage on digital tape (OAT or PCMlvideotape), 
or for computer analysis, by an analog-to-digital converter (AOC). The AOC necessarily 
samples the voltage at discrete times; if the sample rate is too low, information about rapid 
voltage changes is lost. This loss of information can be described as frequency aliasing, 
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in which high-frequency components of the original signal become converted to lower
frequency ones. 

A good criterion for the choice of the sampling frequency is to require that the digitized 
record, when interpolated by some convenient means, is indistinguishable from the original 
continuous record. Sampling at the Nyquist rate (Le., at twice the filter cutoff frequency) is 
a special case of this criterion, but for our purposes, the Nyquist criterion requires two 
unreasonable assumptions. First, it requires that the original signal contain no frequency 
components above a given frequency 10 to avoid aliasing. This is unreasonable because no 
practical filter can accomplish this entirely, and Bessel filters are particularly bad in this 
respect because of their gradual rolloff characteristic. Second, the samples (digitized at the 
Nyquist rate of 2/0) must be interpolated using a very slowly decaying function of the form 
sin(xt)/xt in order to reconstruct the original signal properly. This sort of interpolation requires 
much computation and is not suitable for short records. 

Interpolation is important when the original signal is sampled relatively sparsely; it 
allows one to reconstruct the record to any degree of smoothness for vieWing while using 
a minimum of computer storage for the digitized data. Proper interpolation also reduces 
errors in certain transition-fitting procedures (see Section 4.1.2). When a cubic spline function 
is used to interpolate the points, a practical minimum sampling rate for Bessel-filtered data 
is about five times the -3 dB frequency of the filter, in which case the peak error in the 
reconstruction is about 2% (Fig. 1). In the cubic spline, cubic polynomials form the interpola
tion between every two points, with the second derivative being continuous throughout. The 
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Figure 1. A single·channel current record sampled at various rates. Inward currents through ACh·receptor 
channels in a rat myoball were recorded cell·attached at 22°C with Vm = -45 mY and filtered at fe = 2 
kHz with a four-pole Bessel filter. A: Data points as sampled at 2, 4, 5, 8, and 20 times fe. B: Result of 
cubic spline interpolation of the sampled data. C: Error traces, computed as the difference between the 
interpolated traces and the original data sampled at 20 fe and scaled up by a factor of 4. The single-channel 
current was - 1.5 pA in this recording, and the rms background noise level IT n = 0.15 pA. 
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width of the interpolating function is quite narrow, so that "edge effects" (errors caused by 
the lack of surrounding data points) persist only about four points in from each edge of a 
record. A subroutine for spline interpolation is described in Appendix 3. Other interpolation 
techniques, including simple linear interpolation, can also be used but may require higher 
sample rates. If interpolation is not used, data sampled at the minimum rate appear sparse 
and are hard to evaluate by eye; higher rates, such as 10 to 20 times the filter's -3 dB 
frequency, are needed. 

In general, it is best to digitize the entire experimental record. This is a good because 
it allows all of the data to be inspected directly and because it allows all dwell times, including 
the longest ones, to be measured directly. Sampling at a rate of 40 kHz (appropriate for a 2 
to 4-kHz filter if interpolation is not used) generates 4.8 Mb of data per minute, assuming 
that data are stored as two-byte integers; thus, only a limited amount of data can be stored 
in computer memory. In order to digitize a long continuous record without gaps, the computer 
must have the ability to acquire samples into memory while simultaneously writing the data 
from memory to disk. This can be done by means of a separate memory buffer incorporated 
into the ADC system or by using direct memory access (DMA) transfer of data. For high 
sample rates (say 50 kHz or faster), attention must also be given to the speed at which data 
can be written to the storage device. 

An example of a high-speed continuous acquisition program is the VCatch program for 
Macintosh computers. It acquires digital samples at a 94-kHz rate directly from the playback 
of a videotape recording using the VR-lO PCM adapter (Instrutech Corp, Mineola NY) or 
at sample rates up to 200 kHz using the ITC-16 ADC interface (Instrutech). In each case, 
the interface hardware includes an internal sample buffer (16k or 32k words offrrst-inlfirst
out buffer) that is emptied at regular intervals into a 1 Mb circular buffer in the computer's 
memory by an asynchronous "timer task" running on the host computer. The main program 
displays the incoming data and writes blocks of data from this buffer to a large-capacity 
hard disk. A similar facility is provided by the CED 140 I-plus interface (Cambridge Electronic 
Design, Cambridge, U.K.) for IBM-compatible computers. It uses DMA to transfer ADC 
samples directly to a 64-kb circular buffer in the computer's memory, allowing analogue 
voltages to be digitized at rates up to 80 kHz while writing the data continuously to the hard 
disk. Some commercial interfaces allow continuous sampling and writing to disk only at 
lower rates than these, e.g., up to 30 kHz. For high-resolution data, this sampling rate may 
not be sufficient; however, if the original data recording is on PM tape, it is sometimes 
possible to slow down the tape speed while sampling the data to increase the effective 
sample rate. 

An alternative to digitizing the entire record is to have some sort of automatic detection 
of the points at which opening transitions occur, and to digitize only the sections that contain 
openings. In this approach it is necessary that the detection method keep a record of the 
time intervals between openings, so that the distribution of shut periods can be constructed. 
This approach is satisfactory only to the extent that the detection system is reliable and the 
detection parameters have been properly set up before the recording starts. However, the 
availability of high-capacity disk drives that can store an entire recording makes this approach 
less attractive than it was in the past. 

3. Finding Channel Events 

The analysis of single-channel records first involves estimating the time and the ampli
tude of each transition in the current record. The list of these values is described as an 
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idealized record that approximates the true channel activity and serves as the data set for 
statistical analysis of the kinetics. In practice, some of the original transitions are missed in 
the analysis process. To a certain extent, corrections can be made for missing events (see 
Section 12 of Chapter 18, this volume; Section 6.11 below), but it is important that the 
idealized record be as complete and unbiased as possible, especially when multi state kinetics 
are involved. 

Finding events and fitting the transitions are considered separately in this section and 
the next because the two operations are often carried out separately. For example, a simple 
transition finder can rapidly scan a digitized record for putative channel activity. Once each 
event is found, it can then be fitted to an idealized time course by a much more time
consuming fitting routine, which may even require the record to be filtered differently. On 
the other hand, event detection and characterization can be combined in the use of a simple 
threshold detector, which provides a simple but useful estimator of transition times for 
event characterization. 

3.1. Description of the Problem 

The basic problem in identifying channel activity in an experimental record is that short 
channel openings are indistinguishable from random noise fluctuations about the baseline; 
similarly, short gaps are indistinguishable from fluctuations away from the open-channel 
current level. This is because, as a result of filtering, narrow current pulses as well as random 
noise fluctuations take on roughly the same time course as the recording system's impulse 
response. Determining whether a particular blip is a channel opening can therefore be done 
only statistically. In order to estimate the reliability and the limits of detection, we consider 
a model situation and apply some classical results from communication theory to the problem. 

We assume that the channel activity to be detected consists of widely spaced rectangular 
current pulses of random duration but fixed amplitude Ao. The baseline level is zero. The 
background noise has a spectral density So(f) and is assumed to be Gaussian distributed and 
independent of the channel activity. (These last two conditions appear to hold in high-quality 
patch recordings.) The completely unfiltered current signal x(t) (if it could be observed) is 
represented as the sum of noiseless channel activity s(t) and a noise function n(t), as illustrated 
in Fig. 2. 

The detection strategy is the following: at each time point t we form a linear combination 
y(t) of signal values according to 

y(t) = [x, h(t - ,.)x(,.)d-r (13) 

where h is a normalized weighting function that determines, in effect, the amount of time 

Filter 
h (t ) 

Threshold 

r-------;-,--;---- detector 
y (t) • 

Figure 2. Model of single-channel event detection 
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averaging that is done in forming y. The value of y is then compared with a threshold <1>; if 
y > <I> at some time t, channel activity is said to be detected at t. 

This detection scheme is general in the sense that it includes all possible linear signal
processing operations in the specification of the function h. It is also an optimum detection 
scheme in the sense that, for a signal consisting of pulses of defined shape and size, it can 
yield the lowest probability of error in detecting these pulses (VanTrees, 1968). We do not 
know, however, whether it is the optimum scheme for detecting pulses having random widths, 
as are actually encountered in single-channel records. 

The operation described by equation 13 is a filtering operation; in fact, the function 
y(t) is just what one obtains as the output from a filter with impulse response h(t). Thus, we 
can represent a linear detection scheme of this kind simply as a filter followed by a threshold 
detector, as shown in Fig. 2. The filter in this diagram actually represents the transfer function 
of the entire recording system, including the characteristics of the pipette, patch-clamp 
amplifier, analog filter, and any computations that are performed on the digital samples. One 
step in event detection is often performed by a computer program in which y is computed 
as a weighted sum over discrete sample values rather than as an integral. This is equivalent 
to operating on the signal by a digital filter, which in tum is equivalent to continuous-time 
filtering, by the sampling theorem. Regardless of how the filtering is performed, the problem 
of determining the best way to detect events is reduced to finding a suitable value for the 
threshold <I> and a suitable response characteristic for the filter. 

3.2. Choosing the Filter Characteristics 

3.2.1. Signal-to-Noise Ratio 

The filter's cutoff frequency Ie and the form of the filter's frequency response characteris
tic can be varied to optimize the probability of detection of channel events. One strategy for 
doing this is to maximize the signal-to-noise ratio (SNR) for the response to a pulse of a 
given width, w, in the presence of noise. If SNR is defined to be the ratio of the peak 
amplitude Ymax of the filtered pulse to the standard deviation of the filtered noise, it can be 
expressed in terms of the filter transfer function, B(j), and the noise spectrum, So(f), as 

SNR 
Ir~ B(f)X(f)~ 

(14) 

where X(f) is the complex Fourier transform of the original pulse shape. We will see that 
the choice of the best filter setting depends strongly on the form of So. The background noise 
in the patch clamp should theoretically show flat spectral density at low frequencies (below 
about 1 kHz) and rise asymptotically asp at high frequencies (see Chapter 4, this volume). 
In the frequency range between 1 kHz and 10 kHz, the spectral density typically is seen to 
rise roughly proportionally to f. 
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Two useful models for background noise are, therefore, the so-called "1 + 1" spectrum, 
having the form 

and "1 + 12" noise, 

In each case,fo is a characteristic "corner" frequency. In order to give numerical values for 
the results of calculations, we adopt a standard background noise spectrum of the 1 + I form 
with the (one-sided) spectral density So = 10-30 A2IHz and with/o = 1 kHz. This is a noise 
level that can be obtained with present-day amplifiers and pipette technology when some 
care is exercised. 

If we assume a tunable filter with a variable cutoff frequency,!c, of the form B(f) = 
Bo(fl!c), then we can calculate the dependence of O'n on!c by evaluating the denominator of 
equation 14. In the case that Sn(f) is proportional to I~ for some exponent a, O'n will be 
proportional to !c(a + 1)12. 

In the case of a Gaussian filter response, O'n can be computed directly from equation 
9. The dependence of O'n on/c for various spectral types (flat, 1 + f, and 1 + 12) is illustrated 
by the lower curves in Fig. 3. 

The numerator of equation 14 is the peak value Ymax of the filtered pulse. For a rectangular 
pulse of fixed width, Ymax is small and proportional to!c for low !c values (heavy filtering). 
For a pulse of amplitude Ao and width w, the size of the response is related to the filter risetime, 

W 
Yrnax .... Ao T. 

r 
w« Tr (15) 

As!c is increased, Tr decreases, and Ymax approaches the original pulse height when w ~ Tr. 
This last condition corresponds to filter bandwidths at which the rectangular shape of the 
original pulse can be resolved. The relation between Ymax and!c is shown by the upper curve 
in Fig. 3. 

The choice of the optimum Ic for the three spectral types is indicated by the dashed 
lines in Fig. 3. In the case of a flat spectrum, the largest SNR value is obtained for a relatively 
high value of!c because O'n grows only as!cI12, whereas Ymax rises more quickly at low!c 
values. For Sn(f) rising proportionally to f, the choice of!c is relatively uncritical, since 0' n 
and Ymax rise in parallel. Finally, for Sn(f) rising as /2,!c is best chosen to be small, since 
O'n is rising relatively steeply, as!c312• Figure 3 presents an extreme case in which the pulse 
width w was chosen to be small (10 IJ.s) compared with the time scale of the corner frequency 
10. As a result, the optimum!c values differ widely. For longer pulses, the spread in optimal 
Ic values would be less. 

3.2.2. Matched Filter 

The exact form of the filter response that maximizes the SNR for a given noise spectrum 
and pulse shape is the so-called matched filter, which has the transfer function (see, for 
example, Van Trees, 1968) 
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Figure 3. Effect of filter cutoff frequency fe on signal and noise amplitudes. The upper curve shows the 
peak amplitude Ymax of the response of a Gaussian filter to a IO-.... s pulse of unit amplitude. Below about 40 
kHz, the pulse is appreciably attenuated by the filter. The lower curves show the dependence of the nns 
noise amplitude <Tn on fe assuming flat, 1 + f, and I + .f spectral characteristics. (The noise corner frequency 
was fo = 1 kHz in each case, and So values were chosen arbitrarily.) The dashed lines indicate the points 
of widest separation between Ymax and <Tn, i.e., the highest signal-to-noise ratios. The fe values giving the 
best SNR were 36, 10, and 2 kHz for the three spectral types. In 1 + .f noise, the optimally fitted pulse 
would be attenuated to only 6% of its original amplitude. The absolute value of <Tn for the "standard" noise 
spectrum (So = 10-30 A21Hz) can be read directly from the 1 + f noise curve if the relative amplitude values 
are multiplied by 50 pA. 

X*(f) B(f) = c--
Sn(f) 

(16) 

where X* is the complex conjugate of X, and c is an arbitrary gain factor. [The transfer 
function can be multiplied by an arbitrary delay factor of the form exp( - j 21T fio), but we 
ignore this.] In the case of a flat noise spectrum, the matched filter's impulse response is a 
time-reversed copy of the matching signal-in our case, a pulse of width w; the filter is then 
just a running averager, averaging over a time w. If instead the noise spectrum is not flat, 
the matched filter has a different form. 

It should be noted that the matched filter does not necessarily preserve the shape of the 
original pulse, since it is optimized only for the peak of the response. In the flat-spectrum 
case, for example, the response to the matched rectangular pulse is a triangular pulse. 

3.2.3. Gaussian Filter 

Although matched digital filters are not difficult to program, analog matched filters are 
difficult to make. Besides, one would prefer to have a general-purpose filter with only one 
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adjustable parameter, say, the cutoff frequency, as opposed to one with the complicated 
adjustments implied by equation 16. As was mentioned in Section 2.2, the Gaussian filter 
has various appropriate properties for single-channel analysis. Surprisingly, this filter also 
gives SNR values nearly as large as those from a matched filter. Figures 4A and D compare 
SNR values for the matched filter and the Gaussian filter as a function of the pulse width 
w, assuming noise spectral densities of the 1 + f and 1 + P types, respectively. The SNR 
values for the Gaussian filter were never less than 0.84 times the matched-filter values and 
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Figure 4. Filtering for optimum signal-to-noise ratios in the presence of background noise with 1 + I and 
1 + f2 spectra. A and D: Ratio of peak signal, Ym.x> to rms noise. <Tn. for the matched filter (heavy curve) 
and the optimally tuned Gaussian filter (thin curve) as a function of the matched pulse width w. Band E: 
Gaussian filter cutoff frequency Ie yielding the SNR values plotted above. The choice of Ie is not extremely 
critical. as indicated by the thin curves. which denote the range of Ie curves giving at least 90% of the 
maximum SNR. C and F: The corresponding peak signal amplitudes after Gaussian filtering. The thin curves 
show the range of amplitudes resulting from the range of Ie values in B and E. The noise spectral densities 
were taken to be one-sided. Sn = So(l + 1110) and Sn = So[1 + (1110)2]. with So = 10-30 A2/Hz in each 
case. and the pulse amplitude Ao = I pA. The SNR. Ie. and Ymax values from these curves can be scaled for 
other values of So. 10' and Ao by forming the ratios S = SJIO-30 A2 S. I = loll kHz. and A = AJI pA. 
The resulting values SNR'. I~, and y~, are given by SNR' = [AI(Sj)II2]SNR(wj); I~ = Ifc(wj); and y:'ax = 
A Ymax(wj). 
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were usually much closer to these optimum values. It should be noted, however, that the 
good performance of the Gaussian filter probably results not so much from its characteristics 
as from the relatively noncritical nature of the exact filter. Even a simple two-pole low-pass 
filter can give 0.5 times the optimum SNR. 

To construct the curves in Fig. 4 for the Gaussian filter, !e was allowed to vary to 
maximize the SNR at each value of w; these optimum resulting!e values are plotted in parts 
Band D of the figure. As w decreases, the optimum!e increases. In the case of the steeper 
F spectral asymptote (part E of the figure), the optimum!c reaches a limiting value of about 
1.12 times the corner frequency of the noise spectrum. This behavior can be understood with 
reference to the 1 + F curve in Fig. 3: an increase in!c beyond the limiting value would 
cause the noise amplitude to grow more quickly than the filtered signal amplitude, even 
when the original signal is a very narrow pulse. 

3.3. Setting the Threshold 

Assuming that the filter characteristic has been chosen to be Gaussian, there remain the 
two parameters,!c and the threshold <1>, to be chosen to give the best performance of the 
event detector. Figure 4 shows how one picks!e to give the best detection of pulses of a 
given width. Generally, one does not want to specify a particular value of w, however, but 
instead wants to detect as many events as possible, including the briefest ones. In this 
situation, the choices of <I> and!c are strongly interdependent. It turns out that the simplest 
procedure, at least in the case of flat and 1 + ! noise spectra, is to first specify <I> and then 
choose!e· 

The threshold needs to be set high enough to avoid counting an excessive number of 
noise peaks as channel events but low enough to catch as many true events as possible. In 
background noise having no large periodic components (e.g., containing no contamination 
at the power-line frequency), the false events appear to be short events occurring at random 
intervals, roughly like a Poisson process. The average frequency of false events, X-r, depends 
strongly on the ratio of the threshold <I> to the background noise level IT n; it is also proportional 
to cutoff frequencY!e of the filter. The probability per unit time of crossing of a threshold 
by a Gaussian-distributed process is a standard result (see, e.g., Papoulis, 1965); X-r is half 
of this rate, 

(17) 

where the factor k depends on the filter response characteristic and the form of the spectrum 
according to 

2 1 roo P I B(f) 1 2Sn(f)d! 
k = - --::,-------

fl. roo I B(f) 12 Sn(f)d! 

(18) 

and is of the order of unity. Specifically, for a Gaussian filter, k = 0.849 when the noise 
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spectrum is flat, whereas k = 1.25 for Sn proportional to f2; practical recording situations 
correspond to intermediate values. 

The function in equation 17 is plotted in Fig. 5 assuming!c = 1 kHz. The false event 
rate is seen to be a very steep function of the ratio <I>/cr n decreasing from about 10 events/s 
at <I>/cr n = 3 to 0.004 events/s at <I>/cr n = 5. What constitutes an acceptable value of hf depends 
on the frequency of true events. For detecting relatively rare channel openings, hr should be 
at least one or two orders of magnitude smaller than the opening rate, which implies a <1>/ 
cr n ratio of perhaps 5 or more. On the other hand, in the case that a burst of channel openings 
has been found, the problem might then be to find all channel-closing events. Since the true 
events in this case would be much more frequent, hr could be larger, and <I>/cr n might be 
chosen to be 3, for example. It is a good idea to be conservative and choose a somewhat 
larger value for <I>/cr n than that given by equation 17 or Fig. 5 to allow for possible errors 
in the estimation of the baseline level or small changes in the noise level, which could have 
a large effect on the false-event rate. 

The threshold must also be chosen low enough that the desired events will be detected. 
One strategy for choosing <I> would be to optimize the detection of the shortest possible 
events. Let Wmin be the minimum detectable event width, and Ymax the peak amplitude of a 
filtered pulse of this width. If we set <I> = Ymax, approximately half of all such events will 
be detected, since noise fluctuations will cause some events to cross the threshold and others 
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Figure 5. False-event rate, Ar. as a 
function of the threshold-to-nns-noise 
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to remain below it. To determine the value of Wmin, we can use the signal-to-noise ratio 
curves of Fig. 4. The SNR in this case is just equal to the desired <I>/O"n ratio. Given this, 
the values for Wmin and/e can be read from the curves. Unfortunately, this procedure requires 
that parameters So and 10 of the noise spectrum be known in order to scale properly the 
results from Fig. 4. 

A simpler approach is suggested by the fact that for the 1 + I spectrum, Ymax varies 
only weakly with W (Fig. 4C), and for each w, a considerable range of Ymax values can result 
in nearly maximum SNR values. Thus, one could pick <I> equal to a reasonable Ymax value 
and then tune the filter while measuring 0"0 to give the desired <1>/0"0 ratio. What is a reasonable 
Ymax value? This issue is discussed in Appendix 1; in summary, a good choice of <I> is 0.7 
Ao in the case of small-amplitude events, which will require heavy filtering (!c :5 fa), or 0.5 
Ao for larger-amplitude events for which a wider filter bandwidth will be used. This choice 
of <I> = 0.5 Ao is of practical interest because it allows simple event characterization as well, 
as described in Section 4.1. 

3.4. Practical Event Detection 

3.4.1. Optimal Threshold Detection 

A general procedure for setting up the filter and threshold detector can now be summa
rized as follows: (1) given the channel amplitude Ao, pick a threshold level <1>, e.g., in the 
range 0.4 to 0.7 times Ao; (2) adjust the filter's comer frequency to bring the rms noise, O"n, 
to the desired fraction, e.g., one-fifth, of <I> (3) optionally, <I> can be readjusted slightly in 
view of the relationship between!c and the frequency of the comer of the noise spectrum. 

In typical patch recordings the background noise spectrum has, up to now, commonly 
been of the 1 + I form, for which the above strategies are appropriate. The final asymptote 
of the noise spectral density is, however, proportional to 12, and it is likely that as techniques 
improve and extraneous noise sources are eliminated, the background noise in practical 
recordings will more nearly approach this asymptote. Once the noise density is seen to rise 
more steeply than linearly with frequency, a different strategy for choosing the threshold 
and filter frequency should be used. Recall that in this case the SNR is not improved when 
!c increases beyond a critical value (Fig. 4E); therefore, it would be best in the case of large 
events to set the filter first to the critical frequency, about 1.2 times 10. Then, the threshold 
level can be chosen to be the proper multiple of 0"0 to achieve an acceptably low false
event rate. 

Some convenient means for measuring 0"0 is clearly required in order to set up the filter 
and threshold in the ways just described. A "true rms" voltmeter can be used to read 0"0 

directly, provided that sufficiently long event-free stretches are available for the measurement 
to be made. If the record is digitized, a segment can first be checked visually for the absence 
of obvious events. A calculation of the standard deviation of all the points in the segment 
then yields 0"0- A fairly long segment (or collection of segments) is needed for a precise 
estimate; 1000 points yields a standard deviation for 0" of roughly 5%, depending on the 
spectral type and the relative sampling rate. For example, if the sampling rate is higher than 5!c, 
more points will be required because of the increased correlation between adjacent samples. 

Throughout this section, we have assumed that the baseline level is zero. Since in 
experimental records the baseline current level is nonzero and typically shows a slow drift 
with time, any event-finding procedure needs to compensate for this. One strategy for 
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automatic compensation is to identify event-free segments of the record and to correct the 
baseline estimate continuously by a small amount proportional to the difference between the 
latest segment and the baseline estimate. The estimate is then subtracted to give a zero
baseline record for event detection. This procedure is similar in effect to a first-order high
pass filter and is suitable for records with small drifts and moderate levels of channel activity. 
Automatic routines can, however, be "confused" by records with high activity (i.e., with 
little time spent at the baseline level) and by sudden changes in the baseline level. The most 
reliable technique is probably to fit the baseline, for example, by using a computer display 
of the data with a superimposed movable baseline cursor. In the method described in Section 
4.2, the baseline position is constantly updated by means of a least-squares fit to any section 
of baseline that is on the screen. 

Finally, it should be emphasized that the conditions described in this section for optimum 
detection of channel events are not necessarily the best conditions for characterizing channel 
events. Specifically, the best signal-to-noise ratios for event detection are sometimes obtained 
with relatively heavy filtering that distorts the shape of brief events. This presents no problem 
when the goal is to detect short, widely spaced events. However, as is shown in the next 
section, less filtering is desirable when one wants to discriminate the occurrence of two 
closely spaced short events from a single longer event or if one wants to determine the 
amplitude and duration of an event simultaneously. 

3.4.2. Alternative Approaches to Event Detection 

Sometimes it is not essential to minimize the probability of false events. In the time
course-fitting technique one intentionally places the threshold close to the baseline. Whenever 
this threshold is crossed, the computer displays the event that has been detected. It is then 
left to the operator to decide whether to fit the event or not. If an event is obviously false, 
there is no point in fitting it, but the decision about whether to fit or not is not critical as 
long as the resolution that is eventually imposed on the data (see Section 5.2) is such as to 
produce an acceptable false-event rate. The advantage of this approach is that it ensures that 
all events that are longer than the subsequently-imposed resolution are fitted. 

A practical way to check the false-event rate, one that does not require careful measure
ment of O'm the baseline drift, etc., is simply to observe the frequency of detected events 
having the "wrong" polarity. If, for example, the true channel currents are positive going, 
any negative-going current pulses are most likely false events. 

4. Characterizing Single-Channel Events 

Since most single-channel current events appear to be rectangular steps of one or more 
amplitudes, the crucial step in analyzing a current record containing a single class of channel 
events is to determine the time of each current transition. These times can then be used for 
a kinetic analysis of the channel activity. The technical challenge is to characterize as many 
of the actual channel transitions as possible, including the briefest openings or gaps. In many 
cases the record can be modeled as a series of brief, widely spaced pulses having a width 
w that we wish to measure. Depending on the nature of the channel, these pulses could 
represent either openings or gaps. Special difficulties arise in the fitting process when the 
pulses are not widely spaced; the interpretation of histograms (see Section 6) is also compli-
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cated in this case when the channel openings and gaps are both brief and roughly equal 
in duration. 

It is the rule, rather than the exception, for records to contain more than one open
channel amplitude. This may result from the presence of more than one channel type in the 
patch and/or from the presence of one sort of channel that can open to more than one level. 
The question of how constant these levels are is discussed in Section 5.3.1, but regardless 
of this, the existence of multiple levels causes considerable problems, especially for the more 
automated methods of analysis. Sometimes amplitude estimates are just averaged together 
to give the "mean single-channel current" and although this is sometimes a reasonable 
procedure, it more usually is not. In practice, estimating the amplitude of long events is 
straightforward, but for short events, the estimation of the amplitude not only is unreliable 
but also increases the uncertainty in the transition time estimates. The usual practice, therefore, 
is to fit only the duration of brief events, with the amplitude constrained to some average value. 

The methods of channel characterization we consider here are simple ones in which an 
attempt is made to detect channel-opening and closing events with a minimum of ambiguity. 
We recommend these methods because the bias and statistical errors in the characterization 
are relatively well known and because the detection of each event can be readily verified 
by the user. More sophisticated transition-detection schemes have been applied to single
channel data, including the Hinckley detector and T-test methods (see Chapter 3, this volume); 
these methods are not much better at characterizing simple isolated channel events but show 
promise in allowing better characterization of rapid bursts of events and subconductance 
levels. Still other methods exist that do not rely on the detection of individual events at all 
but obtain indirect information about dwell times and amplitudes from the statistics of the 
entire record. Examples of these are power spectra and all-points histograms computed from 
single-channel records. These provide less information than a full evaluation of closed and 
open times but can be used to fit simple models and thus estimate dwell times and amplitudes 
of rapidly switching channels in cases where these parameters cannot otherwise be obtained 
(see Section 5.3.2; Chapter 3, this volume). A more general technique is the application of 
"hidden Markov model" signal-processing algorithms (Chung et aI., 1990), which allow a 
complete model of the channel activity to be evaluated from all of the information in the 
recording. This technique allows the extraction of useful kinetic information from records 
having a signal-to-noise ratio several times lower than that required for the simple methods 
discussed here. However, it has not yet been applied widely to real data, or tested directly 
against alternative methods of analysis; its usefulness as a routine method is, therefore, not 
yet known. 

4.1. Half-Amplitude Threshold Analysis 

4.1.1. The Technique 

The use of a simple threshold detector is the most widely used method of single-channel 
analysis and is readily applied to channels having only one nonzero conductance level. An 
estimate of the channel amplitude Ao is used to set a threshold level, assumed here to be 
Ao/2. Every crossing of the threshold is interpreted as an opening or closing of the channel, 
so that the time spent above the threshold, WI' is taken as an estimate of the channel-open 
time. As was pointed out by Sachs et al. (1982), choosing the threshold to be Ao/2 is 
convenient because WI is then an unbiased estimate of the true pulse width Wo for long pulses 
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of either polarity and can therefore be used to estimate both open and closed times. However, 
for short events with Wo of the order of the filter risetime Tn W t underestimates Wo (see Fig. 
6). Events shorter than a dead time of about TJ2 are missed altogether, because, after filtering 
they never reach the threshold. 

The exact value of the dead time Td of this detection technique can be either measured 
experimentally or calculated by finding the pulse width that gives a half-amplitude response 
from the recording system. If, for example, an analogue filter is used and has its bandwidth 
set far below that of the other parts of the recording system, it suffices to observe its output 
while variable-width pulses are applied to the input by a stimulator. In the case of a Gaussian 
filter, Td is found (see equation 8) according to 

1 
erf(T 12312a ) = -d g 2 (19) 

which yields Td = 0.538 Tr or, equivalently, Td = 0.179!fc. If, for example, a sample rate of 
1O!c is used (see Section 2.3), Td is 1.79 sample intervals. Alternatively, a dead time can be 
imposed retrospectively, as described in Section 5.2 (as long as all events longer than the 
chosen value have been measured). This method ensures a consistent dead time throughout. 

If not only the dead time but also the complete relationship between W t and Wo is known, 
then the distorting effect of the threshold-crossing analysis can be estimated. In terms of the 
filter step response H(t), which is assumed for simplicity to be symmetrical about t = 0, the 
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Figure 6. Relationship between true pulses with width Wo and the width W, at the 50% threshold for Gaussian
filtered pulses. A: Simulated pulses with lengths given in units of Tr • The shortest pulse fails to reach 
threshold, and the pulses of intermediate width result in low values of the threshold-crossing width, W" B: 
The relationship between W, and true pulse width in the absence of noise. For W, equal to Tr or longer, w 
and W, are essentially equal (dashed line). The points (barely visible under the curve) are values of the 
approximation function (equation 21). 
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relationship is given implicitly by 

(20) 

which must be evaluated numerically. Figure 6B shows this relationship for Gaussian-filtered 
pulses. A convenient approximation to the relationship, having relative errors less than 10-3, 
is given by the function 

Wo = g(wt) 

= Wt + al exp(-w/al - a2w; - a3Wr), (21) 

with al = 0.5382 T .. a2 = 0.837 Tr - 2, and a3 = 1.120 Tr - 3. These coefficients are alternatively 
given in terms of the filter cutoff frequency as al = 0.1787 !fe, a2 = 7.58/c2, and a3 = 30.58 
!o3. The function g can be used directly to convert the observed Wt values to effective Wo 
values. Alternatively, the function can be used to predict the probability density function 
(pdf) of threshold-crossing intervals, h( wt), from the pdf of true durations f( wo) according to 

(22) 

Thus, in the absence of effects from noise, the distortions of this simple analysis scheme 
can be compensated by the fitting of a modified distribution to the resulting duration estimates. 

4.1.2. Effect of Noise 

Noise can be thought of as an instantaneous variation of the threshold level. For relatively 
long events, the Gaussian-distributed threshold fluctuations cause an approximately Gaussian
distributed random error in the determination of each threshold-crossing time. The standard 
deviation in the apparent corrected width, w, is approximately 

(T = 21/2 (Tn T. 
W Ao r 

(23) 

If the duration, w, of short events is corrected, for example, according to equation 21, the 
error in these estimates for W near Td is 

(24) 

and is also approximately Gaussian distributed. 
The threshold-crossing technique automatically excludes events with (apparent) Wo 

values less than Td, but because of the effect of noise, some events with true Wo values less 
than Td will be counted, and some larger events will be missed. The general effect of noise 
is, therefore, a broadening and distortion of the distribution of apparent event durations as 
a result of randomness in the estimates of Woo This broadening is most serious when the 
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underlying distribution f(wo) is rapidly varying. Figure 7 compares theoretical distributions 
of Wo with distributions calculated on the basis of threshold-crossing analysis in the presence 
of a fairly high noise level (with <I>/crn = 4). When the time constant of the underlying Wo 
distribution is less than Tn an exponential fit to the observed, corrected distribution would 
yield a time constant that is too large (compare curves 1 and 3 in Fig. 7 A). A similar effect 
of noise is to be expected on duration estimates obtained by the time-course-fitting technique, 
as errors in the estimates cause a "smearing out" of rapidly varying portions of the distribution. 

For the best performance of the threshold-crossing analysis, it is generally best to 
decrease Tr as much as possible (that is, increase the filter cutoff !c) to reduce the number 
of missed events. The same consideration applies here as in Section 3.4 above, however, 
about choosing a sufficiently large <I>/crn ratio to give an acceptable false-event rate. When 
the threshold-analysis technique is implemented on a computer, an additional problem arises 
from the nature of digitized records. Because of the finite sample interval, it is possible for 
a set of digitized current values to lie below a certain threshold even when the original 
current trace crosses the threshold. This introduces an additional, biased error in the estimates 
of event durations. It is a good idea to use interpolation in order to minimize this effect, 
especially when the sample interval is relatively long. 

The performance of the threshold-analysis technique has been considered so far only 
in the case of widely spaced events. A problem with the technique is that it responds poorly 
to short events that come very closely spaced in time. For example, a brief pulse can be 
counted as a longer one when it occurs in the vicinity of a second pulse (Fig. 8). This effect 
becomes significant when both the pulse length and the gap between pulses are roughly Td 
or smaller. The systematic errors that are introduced by this failure have not been characterized, 
but they are probably not serious when either the mean open time or the mean gap time is 
at least several times Tr• 
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Figure 7. Distortion of pulse duration distributions by the threshold-crossing analysis in the presence of 
noise. The original distributions of durations ware shown by curve I in each part of the figure. The time 
constants of the distributions were Tr in A and 2Tr in B. The distribution of threshold-crossing times, w" is 
shown as curve 2 in each part, and the corrected distribution g(w,) is shown as curve 3. In the absence of 
noise, curve 3 would superimpose on the original distribution. A flat background noise spectrum with O"n = 
<1>/4 was assumed. 



Practical Analysis of Records 

Figure 8. Threshold analysis of closely spaced events. 
Simulated rectangular events (top trace) were filtered 
with a I-kHz Gaussian filter (Tr = 330 jl.s) and displayed 
(middle trace) with twice the vertical scaling. The recon
struction obtained from the threshold-crossing analysis 
is shown in the lower trace. Events I and 2 had lengths 
of 0.5Tr and were just below threshold. Event 4 was even 
shorter (0.47Tr) but was detected because it followed 
event 3 (0.67Tr) by a shut interval of only 0.5Tr. Event 
5 had a length of 2.5Tr. 

4.1.3. Estimating the Amplitude 
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The threshold-crossing technique assumes that the event amplitude is known a priori, 
so that the threshold can be set correctly. In practice, this presents little problem in interactive 
(as opposed to entirely automatic) fitting programs, since the operator can usually find 
sufficiently "square" events to provide an initial estimate for the amplitude. An estimate of 
the amplitude of an individual event, provided it is long enough, can be made by averaging 
the amplitude of the trace between threshold crossings, excluding the points within a given 
distance (e.g., 0.7 T,) of the threshold-crossing points. Because of this exclusion, only events 
longer than about 2T, can be used for determining the amplitude. As will be shown below, 
the time-course-fitting technique can give amplitude estimates for events shorter than this, 
but only at the expense of increased error in the duration estimates. This method suffers 
from the problem that the amplitude estimates so found will be too low if the region of the 
trace that is averaged contains brief shuttings that have not been detected because they did 
not cross the threshold level. If such brief shuttings are at all common (which is often the 
case), then it is necessary to inspect each amplitude fit to make sure that such bias has 
not occurred. 

4.2. Direct Fitting of the Current Time Course 

4.2.1. The Technique 

A theoretical time course of the current can be computed on the basis of the step 
response of the recording system and fitted to the actual record. The step response can be 
measured by injecting a square-wave signal into the input of the patch-clamp amplifier, for 
example using a built-in integrator (see Chapter 4, this volume), or by coupling the triangle
wave output of a function generator into the headstage input through a small capacitance 
(e.g., by simply holding a wire near the headstage). A high-quality triangular wave is needed 
for this job. The resulting output signal, filtered and digitized in the same way as the data 
to be analyzed, is stored in a computer file for subsequent use. Usually, a suitable trigger 
pulse is also recorded, so that several sweeps can be averaged to obtain a smooth output 
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curve. Such a curve is illustrated in Fig. 9A; it is scaled so that it covers the range from 0 
to 1. 

Once the output of the apparatus to a step is known, it is easy to calculate the output 
expected for a series of steps such as a channel opening and shutting. The process is illustrated 
in Fig. 9 for single-channel openings of two different durations, to. The response to the 
opening transition is simply the step response function, which has already been stored. The 
response to the shutting transition is exactly the same but inverted and displaced to the right 
by to seconds. If these two curves are added, we obtain the expected output to a rectangular 
input, as illustrated for two examples in Figs. 9C and F. 

This calculated output can be used to fit actual data as follows. The data are displayed 
on the screen, on which is superimposed the calculated response (output) to a rectangular 
input, which has been scaled by multiplying it by the amplitude of the opening. The amplitude 
cannot be measured from the event itself if it is very brief, so the amplitude must then be 
taken as the mean amplitude of all previous openings that have been fitted or as the amplitude 
of the last opening fitted. The times of the two transitions are then adjusted until the calculated 
output superimposes, as well as possible, on the data, as illustrated in Fig. 12. The adjustment 
of the amplitudes and transition times can be done manually or by means of a least-squares 
fit, as described below. 
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Figure 9. Illustration of the method of calculation of the expected response of the system from the measured 
response to a step input. The left-hand column illustrates a short (45-jLs) pulse, and the right-hand column 
a longer (450-jLs) pulse. The dashed lines in A and D show (on different time scales) the experimentally 
measured response to a step input, shown schematically as a continuous line, for a system (patch clamp, 
tape recorder, and filter) for which the final filter (eight-pole Bessel) was set at 3 kHz (-3 dB). A: The 
response to a unit step at time zero is shown. B shows the same signal but shifted 45 jLS to the right and 
inverted. The sum of the continuous lines in A and B gives the 45 jLS unit pulse shown as a continuous line 
in C. The sum of the dashed lines in A and B is shown as a dashed line in C and is the predicted response 
of the apparatus to the 45-jLs pulse. It reaches about 41 % of the maximum amplitude, which is very close 
to the value of 39% expected for a Gaussian filter (see equation 8). D, E, and F show, except for the time 
scale, the same as A, B, and C but for a 450-jLs pulse, which achieves full amplitude. 
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4.2.2. Theory 

The formal justification of the procedure illustrated in Fig. 9 is as follows. The step 
input at t = 0 is denoted u(t), which is zero for t < 0 and unity for t > O. A rectangular 
pulse input extending from time 0 to time w is therefore 

s(t) = u(t) - u(t - w) (25) 

The output expected for this input can then be found (as long as the system behaves linearly) 
by convolving this input with the impulse response function of the system h(t); i.e., 

y(t) = L [u(t) - u(t - w)]h(t - T)dT (26) 

The system's response to a unit step input u(t) is defined to be the system step response 
H(t), which is the integral of h. Expressed in terms of H(t), equation 26 simplifies to 

y(t) = H(t) - H(t - w) (27) 

This is the calculation illustrated in Fig. 9. When the form of the input is inferred by 
superimposing this calculated response on the experimental data, we are performing a sort 
of graphic deconvolution. 

This process can be extended to any number of transitions. In Fig. 10, some of the 
outputs that can result from four transitions (two rectangular pulses) are illustrated. If the 
transitions are well separated, the output, of course, simply looks like two somewhat rounded 
rectangular pulses (Fig. lOA). If the middle two transitions are close together, we have an 
opening with an incompletely resolved short gap (Fig. lOB). If the first three transitions are 
close together, the response looks like a single opening with an erratic rising phase (Fig. 
1OC). And if all four transitions are close together, the response looks like a (rather noisy) 
opening of less than full amplitude (Fig. IOD). If the channel were initially open in Fig. 
lOD, the response might be mistaken for an incomplete shutting to a conductance sublevel. 

Before we go on to discuss the practical aspects of time course fitting, it is appropriate 
first to discuss the problems that may arise in attempting to fit both duration and ampli
tude simultaneously. 

4.2.3. Simultaneous Determination of Amplitude and Duration 

In theory, both the times and amplitudes of transitions in the theoretical trace could be 
varied to provide a best fit to the time course of the experimental record. The practical 
difficulty is that for pulse widths, w, shorter than the recording system risetime, Tr , the shape 
of the observed current pulse is relatively insensitive to w. In Fig. IIA, we compare the time 
courses of Gaussian-filtered pulses that have widths that differ by a factor of two but equal 
areas. Even in the absence of noise, the time courses are nearly indistinguishable for wIess 
than about Tr /2. 

To obtain a quantitative estimate of the errors to be expected in fitting the amplitude 
and duration simultaneously, the performance of a least-squares fitting routine for fitting the 
time course was evaluated. Figure lIB shows the behavior ofthe expected standard deviations, 
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A B 

Figure 10. Examples of the calculated output of the apparatus (lower traces) in response to two openings 
of an ion channel (upper traces). The step response function used to generate the response is that specified 
in Fig. 9. The curves are generated by a computer subroutine and were photographed on a monitor oscilloscope 
driven by the digital-te-analogue output of the compmer. Openings are shown as downward deflections. A: 
A fully resolved opening (435 I1s) and gap (972 fLS) followed by a partially resolved opening (67 fL S). B: 
Two long openings (485 and 937 I1s) separated by a partially resolved gap (45.5 I1s). C: A brief opening 
(60.7 I1s) and gap (53.1 I1s) followed by a long opening (1113 I1s); this gives the appearance of a single 
opening with an erratic opening transition. D: Two short openings (both 58.2 Jis) separated by a shon gap 
(48.1 .... s); this generates the appearance of a single opening thai is only 55% of the real amplitude but 
appears to have a more-or-Iess flat top, so it could easily be mistaken for a fully resolved subconductance level. 

crA and cr,,, for the estimates of the amplitude and width, respectively, that are found using 
a linearized fitting process. Because the errors are proportional to the background noi se 
standard deviation, cr" the values plotted in the figure are normalized with respect to cr,; 
i.e., they are crAicr, and crw Aoicr,T,. The behavior of the errors as a function of the original 
pulse width, IV, depends on the form of the background noise spectrum; the two extreme 
cases of a flat spectrum and an /' spectrum are shown. 

For long pulses, the error in the estimation of IV is constant and is approximately 1.8 
and 1.3 times T,cr ,iAo for the flat and r spectra, respectively. In a typical situation, Aoicr, 
= 10, which yields crw values in the range of 10-20% of T, . The fact that crw is constant at 
large IV can be understood from the way the duration of a long pulse is measured, as the 
interval between two transitions. If the transitions are far enough apart, the errors caused by 
noise in the detennination of the transition times will be uncorrelated and independent of 
the time between them. On the other hand, amplitude estimates become more precise for 
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Figure 11. Errors in simultaneous fitting of amplitude and duration. A: Gaussian-filtered pulses of the widths 
indicated are superimposed with pulses having half the width but twice the amplitude. As the widths become 
shorter, the time courses become indistinguishable. B: Standard deviations of the estimates of amplitude and 
duration of Gaussian-filtered pulses in the presence of noise having either a flat or I + P spectrum. Pulse 
durations are given in units of the filter risetime Tr • The expected errors EA and Ew are normalized to the 
background noise Un and other parameters according to EA = UA/Un and Ew = uwAo/unTr. The dotted curve 
gives Ew when the amplitude estimate is constrained to the correct value Ao. 
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longer pulses, with the error decreasing as w- 1I2 in the case of a flat background spectrum 
and large w. 

As the pulse width becomes comparable to Tr or shorter, the errors of estimates of both 
amplitude and width increase sharply, becoming double their asymptotic values at about 0.8 
Tr in the flat-spectrum case. This sharp rise does not occur if the amplitude is constrained 
and the duration alone is fitted, as illustrated by the dotted curves in Fig. lIB. This rise 
reflects the difficulty of simultaneous fitting. Because it occurs in the vicinity of Tr , it can 
be seen that a small Tn i.e., the largest possible filter bandwidth, is best for simultaneous 
fitting. Of course, in practice the filter bandwidth must be chosen low enough to avoid 
false events. 

If the duration alone is fitted, with the amplitude held fixed, the error in the duration 
estimate depends only weakly on wand, in fact, decreases slightly as w becomes small, as 
shown by the dotted curves in Fig. lIB. The absolute size of the error is much smaller, and 
the criterion for choosingJc to minimize the error (which is essentially proportional to Tran) 
is similar to that for event detection. 

In conclusion, it is possible to obtain some amplitude information from events shorter 
than the recording system risetime Tr • In practice, this information is difficult to obtain 
because it is based on fine details of the pulse shape, but it could conceivably be useful for 
statistically testing hypotheses such as the existence of multiple channel populations. Much 
more precise estimates for the duration of short channel events can be obtained by fixing 
the amplitude in the fitting process. For longer events with w 2: 2 Tr the concurrent estimation 
of the amplitude has only a small effect on the error of the duration estimates. Estimating 
the amplitude of these events would then be worthwhile provided that the size of the error 
in the amplitUde estimates (approximately equal in magnitude to an at w = 2 Tr) is acceptable. 

4.2.4. Time-Course Fitting in Practice 

Personal computers are now fast enough that it has become feasible to fit simultaneously 
both the duration and amplitude of single-channel openings. With the program SCAN, which 
is under development at University College London, the fit does not take any noticeable 
length of time for fitting up to four transitions and is still quite acceptable for fitting say ten 
or more transitions when run on an 80486 or Pentium processor machine. The data trace is 
scrolled across the screen until an event is detected, as described in Section 3.4.2. The trace 
is then expanded, contracted, or shifted as necessary to get a suitable section of data for 
fitting on the screen. The program then makes initial guesses for the positions of all the 
transitions and amplitudes, performs a least-squares fit on the basis of these guesses, and 
displays the fitted curve for acceptance, rejection, or modification by the operator. Three 
examples of fits done in this way are shown in Fig. 12. 

When the channel is shut at each end of the fitted region, as in Fig. 12A and B, fitting 
n transitions involves estimation of 2n + 1 parameters (the time at which each transition 
occurs, the amplitude following each transition, and the amplitude before the first transition). 
The fit of the amplitude after the last transition is taken as a new estimate of the current 
baseline position. The program "knows" that the channel is shut at this point, so the next 
transition must be an opening; the average of a section of trace before the next opening can 
therefore be taken as a temporary baseline estimate, even if drift has occurred, thereby 
allowing reasonable initial guesses to be made for the next fitting. In this way it is possible 
to keep track of the baseline level. Other options in the program allow fits to be done with 
only one open level for all openings or to be done by specifying the amplitudes in advance 
and fitting only the transition times (as was always done with earlier programs). 
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Figure 12. Three examples of fitting with the SCAN program. The record is from an NMDA-type glutamate 
receptor in a dentate gyrus granule cell (outside-out patch at -100m Y, glutamate 200 nM + glycine I fLM 
with 1 mM Ca and no added Mg, eight-pole Bessel filter at 2 kHz, -3 dB, risetime 166 fLS; methods as in 
Gibb and Colquhoun, 1991; data of A. J. Gibb). The dashed line shows the baseline (shut) level. The record 
was sampled at 50 kHz (though 20 kHz would have been sufficient and more usual). The transition times, 
and amplitudes (for events that were longer than two risetimes), were fitted simultaneously by least squares. 
Shut periods shorter than two risetimes had their amplitudes fixed to zero. Open periods shorter than two 
risetimes had their amplitude constrained to be the same as that of the closest opening that was longer than 
three risetimes. The fitted curve is the continuous line. A: Two contiguous fittings. The durations and 
amplitudes in this fit, starting from the first opening, are as follows: 0.707 ms, -4.48 pA; 0.491 ms, 0 pA; 
0.248 ms, -5.22 pA; 0.321 ms, 0 pA; 5.33 ms, -5.24 pA; 0.894 ms, -3.69 pA; 0.802 ms, 0 pA; 3.08 ms, 
-3.75 pA; 0.216 ms, 0 pA; 0.074 ms, -3.73 pA; 1.83 ms, 0 pA; 0.092 ms, -3.91 pA; 0.448 ms, 0 pA; 
1.02 ms, -3.91 pA; 1.07 ms, -3.52 pA; 0.131 ms, 0 pA; 3.17 ms, -3.74 pA; 0.156 ms, 0 pA; 0.756 ms, 
-4.04 pA; 0.511 ms, 0 pA; 1.39 ms, -3.80 pA; 0.865 ms, 0 pA; 2.47 ms, -3.75 pA; 1.92 ms, 0 pA; 1.59 
ms, -5.06 pA. Note that the transition from -3.91 pA to -3.52 pA (marked with arrow) is dubious, and 
this would probably be removed later, at the stage when the resolution is imposed on the data (see text, 
Section 5.2), when adjacent openings that differ in amplitude by less than some specified amount are 
concatenated into a single opening (with the average amplitude). Band C: Two more examples. In B there 
is a very small transition (from -4.98 to -4.90 pA) shortly after the first opening transition; this was 
triggered by the wobble in the data at this point but would certainly be removed before analysis (see A). 

The fitting of amplitudes in this way will be biased if the regions of trace that are fitted 
contain brief shuttings, as discussed a propos threshold-crossing analysis in Section 4.1.3. 
This problem can be minimized by allowing the program to fit very brief events, even though 
most of them will be rejected later, when a realistic resolution is imposed (see Section 5.2). 

It is, as discussed in Section 4.2.3, not feasible to fit both amplitude and duration to 
very short openings or shuttings. Shut periods shorter than a specified length (usually two 
risetimes) have their amplitudes fixed to zero. Open periods shorter than a specified length 
(also usually two risetimes) have their amplitude constrained to be the same as that of the 
closest opening that is longer than, say, three risetimes, if such an opening is present in the 
region of trace being fitted. Otherwise, the amplitude of short openings is fixed at the current 
mean full amplitude (or some other specified value). 

Once a satisfactory fit has been obtained, the data points in the fitted region can be 
entered into an all-points histogram. Also, those data points that are in regions where the 
fitted curve is flat can be entered separately into shut-point and open-point histograms, which 
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exclude points that are in the region of transition from one level to another (see Section 
5.3.2). This procedure means that these three sorts of histogram can be viewed at any time 
during the fitting process. 

4.2.5. Advantages and Disadvantages of Time-Course Fitting 

There are two major advantages in using the time-course-fitting method. The first is that 
it is the only well-tested method for dealing with records that contain multiple conductances or 
subconductance states. The second is that the resolution of measurements can be somewhat 
greater than can be obtained with the threshold-crossing method. 

It is quite likely that, during time-course fitting, some of the events fitted will not be 
real openings or shuttings of the ion channel but merely random noise or small artifacts. 
This is not really a disadvantage of the method (except insofar as it takes time), because 
such events should be eliminated at a later stage, when a realistic resolution is imposed on 
the idealized record (Section 5.2). In fact, it is actually an advantage, because it minimizes 
the bias in amplitude estimates that result from the presence of brief events that may be 
detectable but would not normally be fitted. 

There will, from time to time, be events on the screen that are ambiguous. It may be 
impossible to tell whether an event is a genuine channel opening at all, or whether it is some 
form of interference. And even if the event is "obviously" an opening, it may be impossible 
to be sure whether it is an opening to a subconductance level or whether it is two or more 
brief full openings separated by short gap(s) (as illustrated in Figs. 8 and 10). Such events 
will necessitate a subjective decision by the operator about the most likely interpretation of 
the data. Magleby (1992) has criticized the method because of the "operator bias" that is 
introduced into the analysis in this way. However, exactly the same sort of operator bias 
will occur in any form of threshold-crossing analysis in which the operator inspects and 
approves or disapproves what the program has done. As mentioned above, it is highly 
desirable that the operator should know what the program has done. It is equally very 
desirable that the operator should be aware that the data contain ambiguous events, even if 
he/she is not sure what to do with them. The only case in which the argument about operator 
bias seems to be valid is when data are analyzed automatically by the "total simulation" 
method proposed by Magleby and Weiss (1990). In this case, it is necessary that a completely 
automatic method of analysis be used because of the immense amount of computation that 
is involved, and it is necessary that the simulated and experimental records be analyzed by 
identical methods (including the ambiguous bits). In all other cases, there is little to be gained 
by sweeping the ambiguities under the carpet. 

The question of ambiguous events has been discussed at some length. However, it is 
probably true, at least for channels that have a reasonably good signal-to-noise ratio, that 
such events are sufficiently rare that the conclusions from the analysis are unlikely to be 
much altered by the subjective decisions that must occasionally be made. 

4.3. Event Characterization Using a Computer 

4.3.1. Data Display 

The single most important feature of a computer system for analyzing single-channel 
data is a responsive and flexible means of displaying the digitized data. Before and during 
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the quantitative event characterization, it is essential that the user be able to examine the 
recording, millisecond by millisecond if necessary, to be able to judge the quality of the 
data. Visual inspection can show features that could be missed or misinterpreted by automatic 
analysis programs, such as the presence of artifacts or superimposed channel events, system
atic changes or "rundown" of the channel activity, and subconductance levels. 

An example of a suitable display for long, continuous data recordings is that of the 
DataSelector program shown in Fig. 13. Here the data are shown at three different time 
resolutions, providing an overview of the entire multimegabyte file (top trace) while also 
allowing inspection of a selected region at high resolution. One important feature of the 
program is the ability of the user to select the position and degree of magnification of the 
data in each trace. As the box in a trace is dragged or resized using the computer's mouse, 
the trace below it is redrawn to correspond to the region enclosed by the box. Another 
important feature of the program is the rapid, flicker-free redrawing of the traces as they are 
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Figure 13. Perusal of a recording using the DATA SELECTOR program. Data are shown from a 4-min recording 
of potassium-channel currents that includes a slow baseline drift and several spikes from electrical interference. 
The top trace shows an overview of the entire recording; the region indicated by the box, about 10 s in 
duration, is expanded as the middle trace. The mouse cursor is positioned to change the size of the box in 
the middle trace, which selects the 150-ms segment shown in the bottom trace. A brief upward spike that 
is visible in the upper traces is seen in the bottom trace to be too broad to be a simple noise spike; it also 
has approximately twice the amplitude of the main channel events, suggesting that it represents an overlapping 
channel opening. The original recording was obtained with a VR-lO PCM/VCR recording system; the data 
were transferred directly to the Macintosh computer, creating a 49-MB data file at the 94-kHz sample rate. 
An off-line Gaussian filtering program, in tum, created synchronized, filtered files with bandwidths of 250 
Hz, I kHz, and 2kHz. The DATA SELECTOR program reads data from these files as needed to draw and update 
the display. 
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rescaled. This is accomplished by first drawing each trace on an off-screen pixel map and 
then copying it to the screen buffer. The copying operation is very fast, providing an essentially 
instantaneous update. The drawing operation itself is also fast enough (usually taking less 
than 100 ms) so that the scrolling and changes of magnification appear smooth and continuous 
to the user. 

For this sort of display, it is important to have fast graphics. The trace-drawing routine 
used in DataSelector was written in assembly language and is optimized for rapidly graphing 
arrays of thousands of data points.* It draws directly to the offscreen pixel-map memory 
rather than making calls to the operating system's graphics routines. Similarly, high-speed 
displays on IBM-compatible personal computers typically use graphics subroutines that write 
directly to the video memory rather than using the BIOS interrupts. 

For the characterization of events the computer display must also be able to superimpose 
cursors or reconstructed transitions over the raw data and allow the user to make manual 
adjustments and corrections. For the 50% threshold analysis, it is sufficient to use the 
computer's mouse to adjust two variable parameters, the estimated current amplitudes before 
and after a transition. Time-course fitting requires more adjustable parameters, and for that 
purpose a set of knobs (i.e., potentiometers that are read by the computer's ADC) can be 
more flexible than the mouse, though when the method described in Section 4.2.4 works 
well, the number of manual adjustments that are needed is small, and mouse/keyboard 
operation is feasible. Use of the numerical keypad, rather than letter keys or mouse, for 
making menu choices is much more ergonomically satisfactory for operations that are highly 
repetitive (and single channel analysis is certainly in this category). 

4.3.2. Programs 

It is still the case, 18 years after the invention of the patch clamp, that no commercial 
program is available that can perform all of the methods that are described in this chapter. 
Perhaps the most serious thing that is lacking is a satisfactory program for analyzing records 
that contain conductance sublevels or multiple conductance levels. At present, if you wish 
to do things that cannot be done by the commercially available programs, there are two 
options. You must either write a program yourself or get one from somebody who has done 
the job you require. 

Many programs offer the choice of fully automatic analysis, without any visual inspection 
of how the program has interpreted your data. Use of such methods is very dangerous unless 
your data are of high quality and have been subjected to some preliminary check that the 
baseline stability, conductance sublevels, ambiguous events, and artifacts are all within the 
range that the program can cope with safely (e.g., see Magleby, 1992). If done thoroughly, 
such a check may take almost as long as checking individual fits unless your recording is 
of exceptionally high quality. The speed of automatic methods obviously makes them very 

*The drawing algorithm is based on the observation that the display of a trace can be generated by a set of 
vertical lines, one for each horizontal pixel position in the display. Often there are many more data points 
to be graphed, say I Q4 or lOS, than the number of horizontal pixel positions, which might be only 640 or 
\024. In simplified form the algorithm can be understood as follows: let n be the number of data points 
corresponding to a given horizontal pixel position. The endpoints of the vertical line to be drawn at that 
position are chosen simply to be the minimum and maximum values of n + I data points (including one 
from the set of points corresponding to the next horizontal position). Because only vertical lines are to be 
drawn, the actual drawing routine can be very simple and efficient. 
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attractive, but the computer maxim "garbage in, garbage out" certainly applies to single
channel analysis, and it may require some investment of time to ensure that you do not get 
"garbage out." 

The earlier forms of time-course fitting were substantially more time consuming than 
threshold-crossing analysis, even when the fits produced by the latter were inspected. How
ever, the methods described above are faster, and there is now probably not much difference, 
at least for data that are good enough that initial guesses for transition times and amplitudes 
are usually satisfactory, so few manual adjustments are needed. As personal computers get 
faster, so the time taken for least-squares fitting of many parameters will be reduced still 
further, and the difference between the various methods will become negligible. The speed 
of the analysis will depend only on the amount of visual checking that is done. 

4.3.3. Storing the Idealized Record 

The output from these programs is a list of numbers representing the time of each 
transition in the current record and the amplitude of the transition. This list contains all of 
the information present in the idealized record that is constructed in the fitting process. 
Generally, this information is stored in a file by the computer for further processing, such 
as sorting into histograms or fitting of distributions. Although in principle only two numbers 
need be stored for each transition in the original record, it is a good idea to include some 
more information in the file to allow for mistakes that inevitably occur in the analysis process. 
For example, if the only clue to the number of channels open is the number and polarity of 
step amplitude values, the corruption of a single entry could cause much confusion. One 
format for the storage of data, used by the TAC program, which performs threshold-crossing 
analysis, stores a record containing the following information as an entry for each transition: 

1. AbsTime, the time of the transition (LONGREAL in seconds) 
2. EventType, the kind of event. This is an enumerated type, having values corresponding 

to (1) normal transition, (2) interval of data to be ignored, (3) transition between 
conductance levels, etc. 

3. Level, the number of channels open after the transition (INTEGER) 
4. PreAmp, the current amplitude before the transition (REAL, in amperes) 
5. NumPre, the number of data samples used to estimate the pre amplitude (zero if the 

amplitude was not determined automatically; INTEGER) 
6. PostAmp, the current amplitude after the transition (REAL, in amperes) 
7. NumPost, the number of data samples used to estimate the postamplitude (INTEGER) 

The use of a LONGREAL (64-bit floating-point) value provides sufficient numerical resolu
tion (better than 1 nanosecond in 24 hr) to allow the absolute time of each event to be stored, 
even when the transition time has been interpolated to a fraction of a sample interval. This 
greatly simplifies operations in which individual transition records are edited and also allows 
each event to be synchronized with its position in the raw data file. The current amplitudes 
are documented by their values as well as the number of points used to estimate them (when 
automatic amplitude estimation is in effect) so that the reliability of the values can be 
estimated. This record structure occupies 24 bytes of storage for each event. The resulting 
event list files are nevertheless much shorter than the raw data files they describe. 

The NumPre, NumPost, and EventType indicators allow the subsequent analyses to be 
carried out with certain values (e.g., ambiguous amplitudes) either included or excluded. 
This will allow a judgment as to the influence of the ambiguities on the conclusions from 
the analysis. 
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5. The Display of Distributions 

Analysis of the experimental results by one of the methods described in Section 4 
produces an idealized record. This takes the form of an event list that contains the duration 
of each event and the amplitude of the single-channel current following each transition (or, 
for some sorts of analysis, only a record of whether the channel was open or shut). We now 
wish to move on to discuss the ways in which the information in this event list can be viewed 
and fitted with appropriate curves. 

5.1. Histograms and Probability Density Functions 

5.1.1. Stability Plots 

This section deals mainly with the display of measurements that have been made at 
equilibrium, so the average properties of the record should not be changing with time. In 
practice, it is quite common for changes to occur with time, and any such change can easily 
make the corresponding distribution meaningless. It is, therefore, important to check the data 
for stability before distributions are constructed or fitted. This can be done by constructing 
stability plots as suggested by Weiss and Magleby (1989). In the case, for example, of 
measured open times, the approach is to construct a moving average of open times and to 
plot this average against time or, more commonly, against the interval number (e.g., the 
number of the interval at the center of the averaged values). A common procedure is to 
average 50 consecutive open times and then increment the starting point by 25 (i.e., average 
open times 1 to 50, 26 to 75, 51 to 100, etc). The overlap between samples smoothes the 
graph (and so also blurs detail). An exactly similar procedure can be followed for shut times 
and for open probabilities. In the case of open probabilities, a value for P open is calculated 
for each set of 50 (or whatever number is chosen) open and shut times as total open time 
over total length. If a shut time is encountered that has been marked as "unusable" during 
analysis (see Section 4.3.3), then the set must be abandoned and a new set started at the 
next valid opening. 

Figure 14 shows examples of stability plots for amplitudes (in A, C, and E) and for 
open times, shut times, and Popen (in B, D, and F). Graphs for A-D are from experiments 
with recombinant NMDA receptors. The two amplitude levels are stable throughout the 
recording for the experiment shown in Fig. 14A and B, though there is a modest tendency 
in B for shut times to decrease and for P open to increase correspondingly during the experiment. 
In contrast, Fig. 14C shows a different experiment in which the two amplitUde levels both 
show a sudden decrease after about the 900th interval. Amplitude histograms from such an 
experiment would show three or four levels but would of course give no hint that there had 
been a sudden change in the middle of the experiment. The corresponding stability plots for 
open times, shut times, and Popen , shown in Fig. 14D, also show instability; shut times 
decrease, and Popen correspondingly increases, at about the same point in the experiment 
where the amplitude changes. The open times, however, remain much the same throughout 
in D, as is also the case for Band F. Figure 14E and F show similar plots from an experiment 
on adult frog endplate nicotinic receptors, in which all the measured quantities remain stable 
throughout the recording; data from this experiment were used to construct the shut-time 
histogram shown in Fig. 15. 

Plots of this sort can be used to mark (e.g., by superimposing cursors on the plot) 
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Figure 14. Examples of stability plots. Data for A, B, C, and D are from NMDA-type glutamate receptors 
expressed in oocytes (unppublished data of P. Stem, P. Behe, R. Schoepfer, and D. Colquhoun; methods as 
in Stem et aI., 1992). Oocytes were transfected with NRI + NR2C subunits in A and B (4002 resolved 
intervals) and with NRI + NR2A + NR2C subunits in C and D (2810 resolved intervals). A and C show 
amplitude stability plots; the horizontal lines in A mark the amplitudes that were fitted to the amplitude 
histogram, -1.01 pA and -1.75 pA. Band D show stability plots for shut time (top), open time (middle), 
and Popen (bottom). Average of 50 values plotted, with increment of 25 intervals. Horizontal lines show the 
average values for the whole run. E and F show the same two types of stability plot for the same frog 
endplate nicotinic receptor data that was used to construct the histograms in Fig. 15 (amplitudes are plotted 
as positive numbers in E). 

sections of the data that are to be omitted from the analysis. For example, this approach has 
been used to inspect, separately, the channel properties when the channel is in a high-Popen 

period and when it is behaving normally. 
It should be noted that when the average Popen value (the value for the whole of the 

data) is plotted on the stability plot, it can sometimes appear to be in the wrong position. 
This may happen when the record contains a very long shut period that reduces the overall 
Popen but affects only one point on the stability plot (which is normally constructed with 
interval number on the abscissa rather than time). 
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5.1.2. Probability Density Functions 

Most of the data with which we have to deal consist of continuous variables (channel 
amplitudes, durations of open periods, etc.) rather than discontinuous or integer variables. 
One exception is the distribution of the number of openings per burst, which is discussed 
below; this number can, of course, take only integer values. The probability distribution of 
a continuous variable may be specified as a probability density function, which is a function 
specified such that the area under the curve represents probability (or frequency). Most 
commonly, the pdf is an exponential or sum of exponentials (see Chapter 18, this volume). 
For example, if a time interval has a simple exponential with mean 'T = 1IX., its pdf is 

t> 0 (28) 

which has dimensions of S-I. Alternatively, the exponential density can be written in terms 
of the time constant, 'T, rather than the rate constant, x.. This is preferable for two reasons. 
First, it is easier to think in terms of time rather that rate or frequency. Second, use of time 
constants prevents confusion between observed rate constants (denoted X.) and the rate 
constants for transitions between states in the underlying mechanism (see Chapter 18, this 
volume). Thus, equation 28 will be written in the form 

(29) 

The area under this curve, as for any pdf, is unity. When there is more than one exponential 
component, the distribution is referred to as a mixture of exponential distributions (or a "sum 
of exponentials," but the former term is preferred since the total area must be I). If ai 

represents the area of the ith component, and 'Ti is its mean, then 

(30) 

The areas add up to unity; i.e., 

or 

Iai = I (31) 

and they are proportional, roughly speaking, to number of events in each component. The 
overall mean duration is given by: 

mean duration = Iai'Ti (32) 

In practice, the data consist of an idealized record of time intervals constructed by one 
of the methods described above (see Section 4). This record may be revised to ensure 
consistent time resolution (see Section 5.2). The open times, shut times, and other quantities 
of interest can be obtained from it. For example, the data might consist of a series of n open 
times tl, t2, ... , tn- They might be, for example, l.41, 5.82, 3.91, 10.9 ... , 6.43 ms. The 
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probability density function is, roughly speaking, proportional to the probability that the 
observation falls within an infinitesimal interval (from t to t + dt; see Chapter 18, this 
volume). But we have not got an infinite data set, so the pdf of the data looks like a series 
of delta functions (one at each measured value). This sort of display is not very helpful as 
it stands, so we smooth it by using a finite binwidth. In other words, we display a histogram 
as an approximation to the pdf by counting the number of observations that fall in intervals 
(bins) of specified width. In the example above, we might use 1 ms as the bin width and 
count the number of observations between 0 and 1 ms, 1 and 2 ms, and so on. These can 
then be plotted on a histogram as illustrated, for example, in Fig. 15. The histogram is 
discontinuous, and its ordinate is a dimensionless number. The pdf it approximates is, on 
the other hand, a continuous variable with dimensions of s-', so care is needed when both 
histogram and pdf are plotted on the same graph (see Section 5.1.5). 

Figure 15A shows a histogram of shut times, with a time scale running from 0 to 1500 
ms, with a bin width of 80 ms. This range includes virtually all the shut times that were 
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Figure 15. Example of a distribution of shut times. In A, B, and C, the histogram of shut times is shown 
(on three different time scales), and in D the distribution of log(shut times} for the same data is shown. The 
data are from nicotinic channels of frog endplate (suberyldicholine 100 nM, -130 mY). Resolutions of 80 
ILS for open times and 60 ILS for shut times were imposed as described in the text; this resulted in 1348 shut 
times, which were used to construct each of the histograms. The dashed bins (which are off scale in B and 
C) represent the number of observations above the upper limit. The data were fitted by the method of 
maximum likelihood with either two exponentials (dashed curve) or three exponentials (continuous curve). 
The same fits were superimposed on all of the histograms. The estimated parameters are shown in D. (D. 
Colquhoun and B. Sakmann, unpublished data.) 
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observed. The first bin actually starts at t = 60 j..ls rather than at t = 0 because a resolution 
of 60 j..ls was imposed on the data (see Section 5.2 below), so there are no observations 
shorter than this. All that is visible on this plot is a single slowly decaying component with 
a mean of about 250 ms, though the first bin, the top of which is cut off on the display, 
shows that there are many short shut times too. The same data are shown again in Fig. 15C, 
but only shut times up to 250 j..lS are shown here, with a bin width of 10 j..lS; the 60-j..ls 
resolution is obvious on this plot. There are many shut times longer than 250 j..lS of course, 
and these are pooled in the dashed bin at the right-hand end of the histogram (the top of 
which is cut off). Again, the histogram looks close to a single exponential, but this time 
with a mean of about 50 j..ls. Although it is not obvious from either of these displays, there 
is in fact a (small) third component in this shut-time distribution. It is visible only in the 
display of the same data in Fig. 15B, in which all shut times up to 8 ms are shown (with a 
bin width of 0.6 ms), where an exponential with a mean of about 1 ms is visible. The data 
were not fitted separately for Figs 15A, B, and C, but one fit was done to all the data (by 
maximum likelihood-see Section 6) with either two exponential components (dashed line) 
or 3 exponential components (solid line). This same fit is shown in all four sections of Fig 
15. The inadequacy of the two-component fit is obvious only in the display up to 8 ms. 

Clearly, the conventional histogram display is inconvenient for intervals that cover such 
a wide range of values. The logarithmic display described next is preferable. 

5.1.3. Logarithmic Display of Time Intervals 

It was suggested by McManus et al. (1987) and by Sigworth and Sine (1987) that it 
might be more convenient, when intervals cover a wide range (as in the preceding example), 
to look at the distribution of the logarithm of the time interval rather than the distribution 
of the intervals themselves. Note that this is not simply a log transformation of the x axis 
of the conventional display (which would produce a curve with no peak, and would have 
bins of variable width on the log scale). Sine and Sigworth suggested, in addition, the use 
of a square-root transformation of the ordinate in order to keep the errors approximately 
constant throughout the plot. 

The distribution has the following form. If the length of an interval is denoted t, and 
In denotes the natural (base e) logarithm, we define 

x = In(t) 

then we can find the pdf of x, fx(x), as follows. First we note that if a t is less than some 
specified value tJ, then it will also be true that In(t) is less than In(tl). Thus, 

Prob[t < t1] = Prob[ln(t) < In(tl)] = P (33) 

In other words, the cumulative distributions for t and In(t) are the same. Now it is pointed 
out in Chapter 18 (this volume, Section 3.1) that the pdf can be found by differentiating the 
cumulative distribution. Thus, denoting the probability defined in equation 33 as P, 

dP dP dt dP 
fx(x) = dx = d In(t) = d In(t) . dt 

= tf(t) 

= I a;Tjl exp(x - Tj1e X ) (34) 
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The second line here follows because dPldt is simply the original distribution of time intervals, 
f(t); it shows, oddly, that the distribution of x = In(t) can be expressed most simply not in 
terms of x but in terms of t. When f(t) is multiexponential, as defined in equation 30, and 
we express fx(x) in terms of x by substituting t = eX, we obtain the result in equation 34. 
This function is not exponential in shape but is (for a single exponential component) a 
negatively skewed bell-shaped curve, the peak of which, very conveniently, occurs at t = T. 

The same data that were displayed in Fig 15A, B, and C are shown in Fig 15D as the 
distribution of log(shut times). The same fitted curves are also shown (the fitting uses the 
original intervals, not their logarithms), and the three-component fitted curve shows peaks 
that occur at the values of the three time constants. It is now clearly visible, from a single 
graph, that the two-exponential fit is inadequate. (The slow component of the two-exponential 
fit also illustrates the shape of the distribution for a single exponential because it is so much 
slower than the fast component that the two components hardly overlap.) This sort of display 
is now universally used for multi component distributions. Its only disadvantage is that it is 
hard, in the absence of a fitted line, to judge the extent to which the distribution is exponential 
in shape. 

5.1.4. The Cumulative Distribution 
The area under the pdf up to any particular value, t, of the time interval is the cumulative 

form of the distribution, or distribution function. namely 

F(t) = P(time interval ::5 t) = {f(t)dt = I - e- tlT (35) 

This is a probability and is dimensionless; it increases from ° to I as t increases. Alternatively 
we may consider the probability that an interval is longer than t, which is, for a single exponen
tial, 

1 - F(t) = P(interval > t) = r f(t)dt = e- tlT 

or, for more than one component, the sum of such integrals: 

1 - F(t) = P(interval > t) = Iaie-tlTi (36) 

Occasionally, the data histogram is plotted in this cumulative form with the fitted 
function (36) superimposed on it. This presentation will always look smoother than the usual 
sort of histogram (the number of values in the early bins is large), but it should never be 
used, because the impression of precision that this display gives is entirely spurious. It results 
from the fact that each bin contains all the observations in all earlier bins, so adjacent bins 
contain nearly the same data. In other words, successive points on the graph are not indepen
dent but are strongly correlated, and this makes the results highly unsuitable for curve fitting. 

To make matters worse, it may well not be obvious at first sight that cumulative 
distributions have been used, because the curve, equation 36, has exactly the same shape as 
the pdf, equation 30. There are no good reasons to use cumulative distributions to display 
data; they are highly misleading. In any case, it is much easier to compare results if everyone 
uses the same form of presentation. 
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5.1.5. Superimposition of a Probability Density Function on the Histogram 

It is helpful to regard the ordinate of the histogram not as a dimensionless number but 
as a "frequency" or "number per unit time" with dimensions of reciprocal time; the ordinate 
then becomes directly analogous to probability density. Rather than regarding the height of 
the histogram block as representing the number of observations between, say, 4 and 6 ms, 
we regard the area of the block as representing this number. The ordinate, the height of the 
block, will then be the number per 2-ms bin. This is illustrated in Fig. 16 for a hypothetical 
example of a simple exponential distribution of open time durations with mean T = 10 ms 
and rate constant "II. = lIT = 100 S-I. The pdf is thus!(t) = WOe-lOOt S-I. It is supposed 
that there are N = 494 observations altogether (including those that might be too short to 
be seen in practice-see Section 6.1). 

The histogram is plotted with a bin width of 2 ms, so the ordinate is number per 2-ms 
bin. The pdf has, of course, unit area. In order to obtain a curve that can be superimposed 
on the histogram, we must multiply the pdf by the total number of events and convert its 
units from S-I to (2 ms)-I by dividing by 500. The continuous curve is therefore get) = 

(494/500)!(t) = 98.8e -lOOt (2 ms) -I. The number of observations that are expected between 
4 and 6 ms is the area under the continuous curve; i.e., from equation 35 or 36, it is 
494(e-41T - e-6h) = 60.6. This is almost the same as the ordinate of the continuous curve 
at the midpoint (t = 5 ms) of the bin: get) = 98.ge-5/T = 59.9 (per 2 ms). This approximation 
will always be good as long as the bin width is much less than T. Thus, if we actually 
observed the expected number of observations (60.6) between 4 and 6 ms, the histogram 
bin would fit the continuous curve closely, as shown in Fig. 16. 

Generalizing this argument, the function, g(t), to be plotted on the histogram is 

g(t) = Nd !(t) (37) 

where !(t) is the probability density function, with units S-I (estimated by fitting the data 
as described in Section 6), d is the bin width (with units of seconds), and N is the estimated 
total number of events as calculated by equations 87, 91, or 101, as appropriate. Note that 

65 

-;;; 60 
E 59-9-+-

N 

8. 

55 

~jl-,",,-T _----'-_----"~ 
o 4 5 6 

length of open time (ms) 

Figure 16. Schematic illustration of the 
superimposition of a continuous curve 
(proportional to the fitted theoretical pdf) 
to a histogram of observed frequencies. 
The block corresponds to 60 observations 
between 4 and 6 ms and has an area equal 
to that under the continuous curve between 
4 and 6 ms. The ordinate of the continuous 
curve at the midpoint of the bin (I = 5 ms) 
is 59.9 (2 ms)-l. See text for further details. 



Practical Analysis of Records 521 

equation 37 is dimensionless, so it is really the pdf that is scaled to the data rather than the 
other way around. 

In the case where the log(interval length) is displayed, as described in section 5.1.3, 
the probability density function, f(t), would usually be fitted, as described in Section 6, by 
the method of maximum likelihood applied to the original observations (not to their loga
rithms). The distribution of 10glO(t) is, from equation 34, 2.30259 tf(t) , where the factor 
2.30259 [= In(lO)] converts from natural logarithm units to common logarithm units. The 
curve, g(t), to be plotted on the logarithmic histogram is thus 

g(t) = Nd' 2.30259 tf(t) (38) 

where d' denotes the bin width in 10glO units. 

5.1.6. Variable Bin Width 

The approach discussed above makes it immediately clear how one should construct a 
histogram with unequal bin widths. It is sometimes useful to use a narrower bin width for 
shorter intervals than for long ones (there are usually more short intervals, and the pdf 
changes most rapidly in this region). Thus, if the ordinate is specified as, for example, 
frequency per 2 ms, then the height of the ordinate for a bin width of 2 ms (say the bin for 
6 to 8 ms) is the actual number of observations found to fall within this bin. However, if 
the shorter intervals are plotted with a bin width of 1 ms rather than 2 ms, then the height 
of the ordinate for the the I-ms-wide bins should be twice the number actually observed to 
fall into the bin. Thus, the area still represents the actual number observed. The plotted 
function is still as given in equation 37 above, but d is now interpreted as the base width 
of the bins, i.e., 2 ms in this example, because the ordinate is the frequency per 2 ms bin. 

5.1.7. Measurement of Popen 

One often wishes to measure the probability that a channel is open from a single-channel 
record. This quantity is usually denoted Popen and is sometimes called the "open probability." 
It is undesirable to refer to P open as the probability of opening, because this sounds like a 
rate constant (probability of opening in a short time interval; see Chapter 18, this volume), 
which is not what is intended. 

Measurements of P open are useful as an empirical index of the activity in a record, 
though the overall Popen for a whole record will often be so distorted by long sojourns in 
desensitized or inactivated states as to be uninterpretable. More fundamentally, if it is possible 
to identify the parts of the record when channels are desensitized, then measurements of 
Popen on the remaining sections provide the best means of constructing equilibrium concentra
tion-response curves (e.g., Colquhoun and Ogden, 1988). Such Popen curves have the advan
tages over other methods that (1) they are corrected for desensitization, (2) they measure 
response on an absolute scale (the maximum possible response is known in advance to be 
I), and (3) they allow direct inspection of the channels that underlie the response so there can 
be little doubt about their identity and homogeneity (see Section 5.9 for tests of homogeneity). 

In a record that is in the steady state, Popen is simply the average fraction of time spent 
in the open state. An absolute value for Popen can, however, be measured only from a record 
that contains only one individual channel (or from a section of a record, such as a burst or 
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cluster, where only one channel is active; see Sections 5.6 and 5.9). However, for the purposes 
of assessment of stability (Section 5.1.1), this is not really important. 

When all of the open and shut times have been measured, P open can be calculated as 
total open time divided by total length of the record. For records where there is essentially 
only one open level, this is the same thing as the average current level throughout the record, 
divided by the open-channel current level. In this case, the best method to measure Popen is 
to integrate the record (with an analogue integrator circuit or digitally). This is a good method 
in principle because the record is filtered, and linear filters do not affect the area of the 
response, only its shape, so integration should be unaffected by the imperfect resolution of 
open and shut times. Use of digital integration is equivalent to the use of point-amplitude 
histograms to measure Popen, as described in Section 5.3.2. It is important to notice, however, 
that integration will be satisfactory only as long as adequate allowance can be made for the 
drift in the baseline (shut) level that occurs in most real records. 

When the system is not in a steady state, P open will be a function of time and can no 
longer be defined as the average fraction of time spent in the open state. This is the case, 
for example, following a voltage or concentration jump or during a synaptic current. In such 
cases, P open(t) must be measured by repeating the jump many times and measuring the fraction 
of occasions when the channel is open at time t. 

5.2. Missed Events: Imposition of a Consistent Time Resolution 

Unless the mean length of an opening is very long compared with the minimum resolvable 
duration, it is inevitable that some short openings will remain undetected. Similarly, some 
short shuttings will also be missed. Methods for making appropriate allowances or corrections 
for such missed events are considered briefly in Section 6.11 and in rather more detail in 
Chapter 18 (this volume). In this section we discuss only the aspects of the problem that 
require action to be taken before histograms are constructed. 

5.2.1. Definition of Resolution 

When the single-channel record is scanned to fit the time of each opening and shutting, 
as discussed in Sections 3 and 4, the usual procedure would be to fit every detectable opening 
and gap (shut time). The length of opening (or gap) considered "detectable" will depend on 
the sort of detection method used. For the threshold-crossing analysis described in Section 
4.1, the minimum length is set by Td, although observed durations up to about twice this 
value are biased and need to be corrected (e.g., with equation 21) before insertion into a 
histogram. With time-course fitting, the minimum length is not clearly defined and will 
certainly depend on the details of the method that is used, on who the operator is, and, quite 
possibly, on how tired he or she is. This will not matter too much as long as care is taken 
to fit everything that might possibly be an opening or shutting, so that when a realistic 
resolution is subsequently imposed (Section 5.2.3), it can be said with certainty that events 
longer than this chosen resolution will not have been omitted during the fitting process. 

5.2.2. Effects of Missed Events 

Consider, for example, the distribution of the open time when there is a substantial 
proportion of undetected short gaps; openings will appear to be longer than they actually 
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are, because two (or more) openings separated by an undetected gap will be counted as a 
single opening (the measured open times are, therefore, more properly referred to as apparent 
open times). 

When the histogram of shut or of open times is plotted, the frequency will tend to fall 
off for very short durations, below which some or all events are too short to be detected. 
Thus, the distribution may appear to have a peak. One way to deal with this is to look at 
the histogram and decide on a duration above which it is thought that all openings will be 
detected and accurately measured; only observations that are longer than this minimum time 
are used for the fitting process. There is, of course, a large arbitrary element in this decision 
(and it is also always possible that the open time distribution really does go through a 
maximum; see Chapter 18, this volume). Nevertheless, if the value chosen is on the safe 
side, this method may seem to be satisfactory. But it is actually fundamentally inconsistent, 
as becomes clear when we consider the effect of the open-time resolution on the shut
time distribution. 

One way in which inconsistency arises becomes obvious when we consider fitting of 
shut times. If we look at the histogram and see that it has a peak near 100 J..Ls but falls off 
for shorter shut times, we may decide, quite reasonably, that it is safe to fit (see Section 6) 
all shut times longer than, say, 140 J..Ls. However, the shut times shorter than 140 J..LS are still 
present in the data, and even though they have just been deemed to be too short to be reliable, 
they will still be regarded as separating two openings, and will therefore, despite their 
unreliability, shorten the apparent open time to a lower value than it would have if the short 
gaps had not been detected at all. And, of course, an exactly analogous inconsistency in 
measurement of apparent shut times can arise when short openings are partially missed. 

Another sort of inconsistency will arise if the criterion for the gap length that is 
detectable does not remain exactly the same throughout the analysis. If it is not constant, 
the apparent lengths of openings will vary with time, so the distribution of the measured 
open times will be distorted even if all the openings are long compared with the minimum 
resolvable duration. 

A third reason why it is important to know about the resolution is encountered when, 
for example, measurements of open times are made at different membrane potentials. The 
resolution for, say, brief shuttings, will be worse when the single-channel currents are smaller 
(potentials closer to the reversal potential), so more of them will be missed. The apparent 
open times will therefore appear to be longer at potentials near the reversal potential, even 
if the true open time does not depend on membrane potential at all. 

Finally, the methods that have been developed recently for making corrections for missed 
brief events almost all require that the resolution of the data be known and consistent. In 
other words, if the resolution is stated to be 100 J..Ls, then we must be as sure as possible 
that no events shorter than this are present in the data, and that all events longer than 100 
J..Ls have been detected. 

For all of these reasons, it is important that the resolution (the shortest event fitted) be 
stated in published work; without knowing the resolution, it is impossible for other authors 
to compare their results for quantities as mean "apparent open time" (though this rarely stops 
them from trying). 

5.2.3. Imposition of Resolution 

One way to avoid the inconsistencies just described is to impose a resolution on the 
data retrospectively (Colquhoun and Sakmann, 1985). In the analysis of the original experi-
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mental record, every event is fitted even if it is so short that its reality is dubious. While 
this is done, a judgment is made as to the shortest duration (tres say) that can be trusted (the 
value of tres may not be the same for open times and for shut times). Again, this is quite 
subjective; a value on the safe side should be chosen. The most important criterion for the 
choice of tres is that it should be chosen so that it ensures a sufficiently low false-event rate, 
e.g., below 10-8 s-I (see Section 3.3). 

When the analysis is completed, and the idealized record is stored (see Section 4), the 
chosen value of tres can be specified and the idealized record revised as follows: 

1. All open times that are shorter than tres must be removed. Shut times that are separated 
by openings shorter than tres are treated as single shut periods. The lengths of all 
such shut times are concatenated (together with the lengths of intervening short 
openings) and inserted in the revised data record as single shut times. 

2. Similarly, all shut times that are shorter than tres must be removed. If the two openings 
that are separated by the short gap have both got the same amplitude, then the two 
open times are concatenated (together with the intervening shut time) and inserted 
into the revised record as a single opening. If the two openings have different 
amplitudes, they are inserted into the revised record as two openings with a direct 
transition from the first open level to the second. This procedure entails deciding 
exactly what "the same amplitude" means. Some criterion must be specified, which 
will depend on what amplitude difference is deemed large enough to be detectable; 
for example, amplitudes that are separated by less than 10% of the full amplitude 
might be deemed "the same." 

In this way a new idealized record, with consistent time resolution throughout, is 
produced, and it is this that is used for subsequent construction of histograms and fitting. 
The new record cannot, of course, contain any openings (or gaps) shorter than tres, so the 
histograms start at this point. As long as the original idealized record is kept, it is easy to 
repeat the fitting with a different resolution if necessary. 

It may be noticed that, for example, imposition of a SO-J.1s resolution on a perfect record, 
followed by imposition of lOO-J.1s resolution, will not necessarily give exactly the same result 
as imposition of 100-J.1s resolution directly on the perfect record. To the extent that the data 
we start with are never perfectly resolved, this approach does not give precisely the required 
results, but it is, nevertheless, the best that can be done. 

5.2.4. Resolution, Sublevels, and Fit Range 

It must be remembered that events (openings or shuttings) may be detected with certainty 
in the single-channel record even when their duration is shorter than the risetime (Tr) of the 
recording system. However, their duration must be at least 2Tr before their amplitude can 
be measured accurately (see Section 4). If, for example, it is desired to construct a distribution 
of the apparent times but to include in the distribution only those open times that are 
sufficiently long for their amplitudes to be known, then only openings longer than 2Tr or 
2.STr can be used. However, this does not mean that the resolution of 2Tr should be imposed 
on the data. If this resolution were imposed on the shut times, many brief shuttings, which 
are nevertheless long enough to be detected with certainty, would be excluded, thus causing 
the apparent open times to be longer and causing unnecessary error in the estimation of the 
open time. The resolution that is imposed should depend on what can be detected reliably 
(i.e., distinguished from random noise), but, in the case just described, the range of values 
that are used for fitting should exclude values shorter than 2Tr. When conditional distributions 
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are used for maximum-likelihood fitting, as described below, there is no problem in fitting 
only those observations that lie within any specified range. 

The distinction between resolution and fit range does not cause too many problems 
when there are no subconductance levels in the record. In this case, any deflection toward 
the baseline must represent a complete shutting. But when the channel shows subconductance 
levels, the problem is more difficult, and it may be desirable to impose different resolutions 
and/or different filtering for different sorts of analysis. 

For example, Howe et al. (1991) describe procedures for analysis of NMDA-type 
glutamate-activated channels that showed conductance levels of 30 pS, 40 pS, and 50 pS. 
A resolution that produces an acceptable false-event rate for the 50-pS openings may result 
in an unacceptably high false-event rate for smaller openings in the same record. For analysis 
of amplitudes, the results were treated as described above; the resolution was set to produce 
an acceptable false-event rate for 50-pS events, but events shorter than 2.5Tr were excluded 
from fitting. For distributions of shut times the open-time resolution was set to give an 
acceptable false-event rate for 50-pS openings, but the shut-time resolution was set to ensure 
that events described as shuttings were unlikely to be transitions from 50 pS to 40 or 30 pS 
or transitions from 40 pS to 30 pS. To achieve this, the resolution was set to duration w, 
such that events are counted as shuttings only if they are seen to reach a level safely (say 
2 standard deviations) below the 30-pS level. This can be achieved by solving for w (e.g., 
by bisection) 

The right-hand side of this equation gives the fraction of its maximum amplitude attained 
by a rectangular pulse of length w (see equations 8 and 12). On the left hand side, Aso and 
A30 are the absolute current amplitudes for the 50-pS and 30-pS openings, and S30 is the 
standard deviation of the 30-pS currents (these values being obtained from fitting of amplitude 
histograms). For further details, see Howe et al. (1991). 

5.3. The Amplitude Distribution 

Single-channel current amplitudes are interesting for two main reasons. First, the ways 
the amplitude varies with ionic composition of the bathing medium and with membrane 
potential are important for the study of ion permeation mechanisms. Second, amplitude 
measurements are often a useful way to characterize channel types, e.g., types with different 
subunit compositions or with mutations. 

It has been shown in Section 4.2.3 that the amplitude of a channel opening can be 
measured accurately only if the duration of the opening is at least twice the risetime (Tr) of 
the recording system. Amplitude measurements should, therefore, be included in the amplitude 
histogram only when the opening is longer than some specified length such as 2Tr or 2.5Tr. 
This can, of course, be done properly only if the amplitude is estimated separately for every 
opening, and there are, unfortunately, still many analysis programs in use that cannot do this. 

Often there will be more than one channel in the patch of membrane from which the 
recording is made, and in this case, more than one channel may be open at the same time, 
so that current amplitudes that are integer multiples of the single-channel current are seen. 
This question is discussed further in Section 5.4. 
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5.3.1. How Variable Are Single-Channel Amplitudes? 

The amplitudes of single-channel currents are, in some cases at least, very consistent. 
For example, Fig. 17 shows a distribution of amplitudes measured from adult rat endplate 
nicotinic acetylcholine receptors. It has been fitted (arbitrarily) with a Gaussian curve and 
shows a mean of 6.62 pA and a standard deviation of 0.12 pA (Le., 1.8% of the mean). The 
variability from one opening to the next of the same ion channel or of different channels in 
the patch seems to be very small, possibly no greater than the error in the fitting of the 
amplitude. In this case the amplitude is not an inherently random variable like the open time 
but is, for practical purposes, a more or less fixed quantity. 

However, channel amplitudes more commonly are not exactly constant. It seems that 
just about every sort of channel shows extra open-channel noise; Le., the current record is 
somewhat noisier when the channel is open than when it is shut (e.g., Sigworth, 1985, 1986). 
If it is assumed that the excess open-channel noise is independent of the baseline noise, so 
their variances are additive, the root mean square excess noise, Sexces .. can be estimated as 

(39) 

The extent of this excess open-channel noise varies greatly from one sort of channel to 
another; it is very small for adult frog muscle nicotinic receptors (D. Colquhoun, unpublished 
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Figure 17. An example of the distribution of the fitted amplitudes of single-channel currents; amplitudes 
were defined by eye, by means of a cursor on the computer screen. Unpublished data of D. C. Ogden and 
N. K. Mulrine; channel openings elicited by 100 nM acetylcholine in cell-attached patch on adult (200-g) 
rat endplate in extracellular solution (with 20 mM K+ and I mM Ca2+), at resting potential -80 mY. After 
a resolution of 50 ILs was imposed for both openings and shuttings, there were 1100 resolved intervals, and 
the histogram was constructed from 433 amplitudes of openings that were longer than 2 risetimes. The 
continuous curve is a Gaussian distribution, which was fitted to the data by the method of maximum likelihood; 
it has a mean of 6.62 pA and a standard deviation of 0.12 pA. The main display covers only the range from 
5 pA to 8 pA in order to show clearly that the observed distribution has a sharper peak and broader tails 
than the Gaussian curve, as predicted in Section 5.3.3 and Appendix 2. The inset shows the same distribution 
plotted over the range 0-8 pA to show that there is only one narrow peak in the distribution. 
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data) but very large for some neuronal nicotinic receptors (e.g., Mathie et ai., 1991). It is 
likely that the phenomenon is intrinsic to the receptor protein; it appears in recombinant 
receptors and can be strongly influenced by small mutations. It seems likely that it can be 
regarded as resulting from fluctuations in channel structure that produce small changes in 
conductance or from entry into subconductance states that are short-lived and/or differ only 
slightly from the main conductance level. The appearance of extra open-channel noise can 
also be mimicked by frequent and brief channel blockages (e.g., Ogden and Colquhoun, 1985). 

It is common for more than one conductance level to appear in single-channel recordings. 
One, probably quite common, reason for this is heterogeneity of the channels in the membrane 
patch. In addition, though, it has become apparent that most types of ion channel have more 
than one conductance level. For some types these conductance sublevels are rare, but for 
others they are quite common. For example, the NMDA-type glutamate receptors all show 
this phenomenon clearly, as illustrated in Figs. 12 and 18. These channels have a SO-pS main 
level and a briefer 40-pS sublevel. It is not known whether such sublevels have any functional 
importance (though it seems unlikely), but they are certainly useful for characterizing subunit 
combinations (Stem et ai., 1992). 

In this case ofNMDA receptors, the SO-pS and 40-pS peaks are quite clear and reproduc
ible from experiment to experiment. There is, however, some question as to whether all "SO
pS" openings have exactly the same conductance (apart from random measurement errors). 
There is some reason to suspect that they may not. 

The various methods that are used for investigation of amplitudes are discussed next. 

5.3.2. Point· Amplitude Histograms 

The simplest procedure is to make a histogram of the values of the individual digitized 
data points (after subtracting the baseline value, so the shut channel appears with zero 
amplitude). This is often known as a point-amplitude histogram to distinguish it from 
histograms formed from fitted amplitudes (see Section S.3.3). There will be a lot of points 
in such histograms, but the points are not independent, so the large number of points does 
not necessarily imply high precision. In order for the sample points in filtered data to be 
approximately independent, they would need to be about one risetime (Tr) apart, but the 
sample rate is normally a good deal higher than this. For statistical purposes, the "effective 
number of points" could taken roughly as (sample duration)/Tr • 

The relative areas of the peaks in a point-amplitude histogram represent the number of 
data points, i.e., the length of time spent, at each amplitude level (cf. next section). The 
areas of the peaks can therefore be used to estimate the fraction of time for which the channel 
is open, i.e., the probability of being open (Popen), as long as all data points are included 
(see also Section S.1.7). 

5.3.2a. The All·Point·Amplitude Histogram. The crudest method is simply to make 
the histogram directly from all points in the data record. In fact, this is the only method that 
is available in many commercial programs. The main problem is that the method obviously 
depends on the baseline remaining exactly constant throughout the record. This is rarely 
true, so in practice it is possible to use the method only on relatively short stretches of data 
for which the baseline can be checked carefully. Alternatively, if both baseline and open 
levels have been fitted, as illustrated in Fig. 12, all the data points in the region that 
has been fitted (and approved) can be entered into the histogram; this provides excellent 
compensation for baseline changes, but the results cannot be used to estimate Popen because 
many shut points are omitted. 
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An example of an all-point histogram constructed in the latter way is shown in Fig. 
18B and C. The peaks for the shut level and for the main (about 5-pA) open level are 
obvious. However, there is a smear of points between the two (the data points that lie in the 
transition regions between open and shut), and this partially obscures the small peak that 
corresponds to the sublevel at about 4 pA; this is shown on an enlarged scale in Fig. 18C. 
This smearing can be reduced as follows. 

5.3.2h. Open-Point and Shut-Point Amplitude Histograms. Once transitions have 
been located by one of the methods described in Section 4, then it becomes possible to exclude 
data points that lie on the transitions from one conductance level to another. Knowledge of 
the step-response function of the recording system allows the transition period to be defined 
accurately. An example is shown in Fig. 12; only those data points that correspond to the 
flat sections of the fitted curve (i.e., areas where no transitions were detected) are entered 
into the histogram. The open-point amplitude histogram in Fig. 18E was constructed in this 
way. Most of the smearing has gone, and the rather small 4-pA component is more clearly 
defined than in the all-point histogram, as shown on an enlarged scale in Fig. l8F. And, 
since the baseline adjacent to the openings is fitted along with the openings, there should 
be no distortion caused by baseline drift. 

The data points that correspond to shut periods are entered into a separate histogram, 
as for the open points. A shut-point histogram is shown in Fig. 18D; it is usually found, as 
in this case, that the shut-point histogram is fitted very well by a simple Gaussian curve 
(i.e., the baseline noise is Gaussian). Open-point histograms, on the other hand, may not be 
perfectly Gaussian because of such effects as undetected sublevel transitions or brief closures. 

5.3.2c. Analysis of Flickery Block. The asymmetry in point-amplitude histograms 
contains information about the nature of open-channel noise. This information can be interpre
ted by use of either noise analysis (Sigworth, 1985, 1986; Ogden and Colquhoun, 1985; 
Heinemann and Sigworth, 1990) or the amplitUde histogram itself (Yellen, 1984; Heinemann 
and Sigworth, 1991). These methods have been used, for example, to analyze rapid channel 
block. High concentrations of a low-affinity channel-blocking agent produce so-called "flick
ery noise." Because of the high concentration, blockages are frequent, and openings are 
short, and when blockages are so brief that they cannot be resolved easily in the single
channel record, the open channel appears to be very noisy and to have a reduced amplitude 
(see Chapter 18, this volume). Such flickery noise, when it happens to be in the right 
frequency range, will produce a characteristically shaped smear in the all-point amplitude 
histogram. If the blocking process is approximated as a two-state process, and we look at 
the channel only while it is open or blocked, the mechanism can be written thus 

(40) 

where LB is the dissociation rate constant for the blocker, k+B is the association rate constant, 
and XB is the blocker concentration, so k+BXB is the transition rate from open to blocked 
state (per unit open time). 

One approach, which works best for events that are close to being resolvable (mean 
duration comparable to the filter risetime), is based on the work of Fitzhugh (1983). This 
theory showed that, for data that have been filtered through a simple RC filter with time 
constant Tf = RC, the point-amplitude histogram should be described by the beta distribution. 
The beta distribution was used to analyse fast block by Yellen (1984). If we denote as y the 
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Figure 18. Examples of various sorts of amplitude histograms. Data were from a 10-s recording of NMDA 
channels (same data as were illustrated in Fig. 12, where details are given). Resolution was set to 30 f.LS for 
shuttings and 40 f.LS for openings, with concatenation of contiguous open levels that differed by less than 
O.S pA. A: Distribution of fitted amplitudes (of the type listed in legend of Fig. 12). Openings with a duration 
of less than two risetimes (332 f.Ls) were excluded, which left 1049 amplitudes to be fitted (between 3.4 and 
6.0 pA) with a mixture of two Gaussian distributions by maximum-likelihood method using the original 
values. The components had means of 3.97 pA and 5.18 pA (the usual "40-pS" and "SO-pS" components 
seen in I mM Ca). The areas of the components were 11.8% and 88.2%, and the standard deviations were 
0.36 pA and 0.17 pA, respectively. Band C: All-points amplitude histogram. This histogram shows the 
amplitude of all data points within the fitted range (solid line in Fig. 12). This ensures freedom from the 
effects of baseline drift but means that the relative area occupied by the shut points is arbitrary. The small 
"40-pS" component is shown on an enlarged scale in C; this also makes more obvious the smearing that is 
inevitable in an all-points histogram. D, E, and F: Separate open-point and shut-point histograms. The data 
points that correspond to the regions where the fitted curve (see Fig. 12) was flat were collected separately 
for regions where the channel was shut and where it was open. This eliminates the smeared points during 
the transition from shut to open. The shut-point histogram in D is well fitted with a single Gaussian (standard 
deviation 0.12 pA). The open-point histogram in E (and, on an enlarged scale, in F) shows much clearer 
demarcation of the subconductance level than the all-points histogram. The fit with two Gaussian components 
is not perfect, though the fitted means, 3.97 pA and 5.17 pA, are almost identical to those found from the 
fitted amplitudes in A. 
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current amplitude, normalised to lie between the values of 0 and 1, the probability density 
function for the beta distribution can be written as 

I( ) = rea + b) (a-l)(l _ y)(b-l) 

y r(a)r(b) y 
(41) 

where 

In this result, rex) denotes the gamma function, which is a continuous version of the factorial 
function, such that rex + 1) = x! when x is an integer. The gamma function is tabulated 
by Abramovitz and Stegun (1965) or can be computed as described by Press et al. (1992). 
This result does not include the background noise in the recording, but by first convolving 
it with the baseline noise distribution and then fitting the result to the point-amplitude 
histogram, one can obtain estimates of the blocking and unblocking rate constants. 

The beta distribution method makes some undesirable assumptions. For example, a 
simple RC filter is never used in practice. For any more realistic filters, the theory becomes 
a great deal more complicated (A. Jalali and A. G. Hawkes, unpublished results), though 
Yellen (1984) showed that use of the beta distribution could work reasonably well with 
Bessel-filtered data. Second, it makes no allowance for spontaneous shuttings or for the 
excess open-channel noise (Sigworth, 1985, 1986) that exist in the absence of blocker. 

For these reasons, Ogden and Colquhoun (1985) preferred to use the noise spectrum 
(spectral density function) ofthe open-channel noise. Use of noise analysis allows approximate 
corrections to be made for excess open-channel noise, and it allows use of a realistic filter; 
expressions are given by Colquhoun and Ogden for the variance of Gaussian-filtered, or 
Butterworth-filtered Lorentzian noise. They were able to estimate the mean duration of 
blockage of a nicotinic channel by carbachol as about 9 f-LS (which is similar to that measured 
by direct time-course fitting). Heinemann and Sigworth (1990) used a noise analysis to 
estimate the mean duration of block of gramicidin channels by Cs+ as about 1 f-Ls. This latter 
value was confirmed by Heinemann and Sigworth (1991) by inspection of the cumu1ants of 
the point-amplitude distribution. The cumulant method provides a method of analysis of 
point-amplitude histograms that is complementary to the beta-function approach. The beta 
function works best with events that are comparable with the filter risetime, but the cumulant 
method is better for events that are much shorter than the risetime (but are widely spaced). 

5.3.3. Amplitude Histograms from Fitted Amplitudes 

The other main method for display of single-channel amplitudes is to measure the 
amplitude of each opening separately and to make a histogram of the results. The amplitudes 
can be measured by placing a cursor on the data on the computer screen, by eye, or by using 
a least-squares fit to the data as illustrated in Fig. 12. In either case, the amplitude can be 
measured only for events that are longer than about two risetimes, as explained in Section 
4.2.3. And in either case, the estimates are susceptible to bias resulting from undetected brief 
closures. The latter problem can be minimized by fitting all possible closures, even if they 
are so short that they will eventually be eliminated when a safe resolution is imposed (see 
Section 5.2.3). The histogram has only one value for each opening, so if more than one open 
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level is present, the relative areas of the components will represent the relative frequencies 
with which the levels occur (rather than the relative time spent at each level). 

An example of an amplitude histogram constructed in this way is shown in Fig 18A, 
for the same data that were used to illustrate the point-amplitude histograms. In principle, 
this histogram should show components even more clearly than the open-point-amplitude 
histogram, because smearing between transitions from one open level to another is avoided, 
as is smearing between open and shut levels. It is, on the other hand, somewhat less objective 
than the open-point-amplitude histogram. 

It is usual to fit (as described in Section 6.8.3) a Gaussian or a mixture of Gaussians 
both to amplitude histograms and to point-amplitude histograms in an attempt to resolve 
different conductance levels. In fact, this may not be appropriate in either case (as discussed 
in the preceding section for point-amplitude histograms). In the case of fitted amplitudes, 
the distribution often shows a sharper peak and broader tails than is expected for a Gaussian, 
as illustrated in Fig. 18A or, particularly clearly, in Fig. 17. 

A distribution of this sort is to be expected because the amplitude values are obtained 
from events of variable duration. The long events give the most precise estimates and cluster 
around the true value to give the sharp peak. Short events give values with more scatter and 
contribute to the tails. The distribution that would be expected is derived in Appendix 2. 
This result, although preferable to Gaussian fits, has not yet been used much in practice, 
probably because of the inconvenience involved in determining the background noise spec
trum. 

5.3.4. Mean Low-Variance Amplitude Histograms 

Patlak (1988) suggested a method for detection of peaks in amplitude histograms by 
searching the digitized data record for sections where the channel is open and the record is 
"flat." This is done by looking at sections of the data of fixed length (e.g., ten points). The 
mean and standard deviation of each such section is calculated, and this process is repeated 
after advancing the start of the data section by, for example, one point, until the end of the 
data is reached. A data section is deemed to be flat and therefore to represent a well-defined 
conductance level if its standard deviation is less then some specified multiple (e.g., 0.5 to 
2) of the standard deviation of the baseline noise. All sections that have a larger standard 
deviation than this are rejected, and a histogram is constructed of the mean amplitudes of 
the remaining sections. Three different values have to be specified to construct the histogram 
(the section length, the number of points to advance, and the threshold standard deviation), 
so a variety of histograms can be produced. This method may work well on some sorts of 
data, especially if the conductance levels are reasonably long-lived. However, use of sufficient 
filtering will make long-lived conductance levels obvious by any method of analysis. It is 
much harder to distinguish subconductance states that are short-lived. If the data sections 
are made shorter, their increased scatter means the histogram is more scattered, so peaks 
become hard to distinguish. And if the threshold standard deviation for inclusion is made 
lower, the number of points in the histogram is reduced, so again peaks become hard to 
distinguish with certainty. 

5.3.5. Subconductance Transition Frequencies 

When there is more than one open-channel conductance level, it may be of interest to 
measure the frequency of transitions from one open level to another (and from each open 
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level to the shut level). This provides another way to characterize quantitatively different 
receptors or subunit combinations (Howe et al., 1991; Stem et aI., 1992). It can also provide 
useful information about reaction mechanisms, and it allows a test of the principle of micro
scopic reversibility (see Chapter 18, this volume). For example, in the data shown in Fig. 
18, there are components with means of about 4 pA and 5 pA (i.e., conductances of about 
40 pS and 50 pS). When amplitudes have been fitted to each opening (Section 5.3.3), it is 
simple to categorize each transition in the idealized record as 0 ~ 50 pS, 50 ~ 0 pS, 0 ~ 
40 pS, 40 ~ 0 pS, 40 ~ 50 pS or 50 ~ 40 pS. This cannot, of course, be done with 
programs that produce only point-amplitude histograms. 

Calculation of a Critical Amplitude 

The amplitude components almost always overlap to some extent, so the classification 
of openings (into 40-pS and 50-pS classes in the above example) will not be entirely 
unambiguous. A critical amplitude, Ae, that minimizes the total number of amplitudes misclas
sified was used by Howe et al. (1991). This number is proportional to 

f'" rAe 
nmis = a\ /i(A)dA + a2 J( fiA)dA 

Ae 0 

= 0.5{a\[1 - erf(u\! j2)] + a2[1 - erf(u2! j2m (42) 

where f\ andf2 are the Gaussian densities for the components with smaller and larger means, 
respectively; a\ and a2 are proportional to the areas of these components; erf represents the 
error function (see Appendix 3.3); and u\ and U2 are standard normal deviates; Le., u\ = 
I(A - J.L\)!er\l, U2 = I(A - J.L2)!er21, where J.Lh er\ and J.L2, er2 are the means and standard 
deviations of the components. This is at a minimum when 

Thus, Ac may be found by solving the quadratic equation 

aA~+bAc+c=O (43) 

where the coefficients are defined as 

a = (lIer~) - (lIerT), 

b = 2[(J.L\! erT) - (J.L2! er~)], 

c = (J.L~!er~) - (J.Ly!erT) - 2In[(a2!er2)!(a\!er\)]. (44) 

5.4. The Open and Shut Lifetime Distributions 

There are only two directly observable types of distribution, the distribution of open 
times and the distribution of shut times or gaps (Le., of the durations of the intervals between 
openings). Although the open times are an obvious focus of attention, the shut times are 
equally if not more informative (see Chapter 18, this volume). Usually it is sensible to look 
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at the shut-time distribution first, because it is this that dictates whether or not it is feasible 
to divide the openings into bursts. 

It is preferable to refer to these distributions as those of apparent open times and 
apparent shut times because the effects of undetected shuttings and openings, respectively, 
mean that the results will rarely be accurate (see Sections 5.2 and 6.11 and Chapter 18, this 
volume). For example, if some shut times are too short to be resolved, then the measured 
openings will be too long, because some actually consist of two or more openings separated 
by unresolved gaps. The shut times may also be too long if they contain brief undetected 
openings. However the word "apparent" will, for brevity, be dropped when the intention is 
clear from the context. 

Both distributions are usually fitted by mixtures of exponentials, as in equation 30. The 
number of components in the open-time distribution should be equal to the number of open 
states, and the number of components in the shut-time distribution should be equal to the 
number of shut states. It is, of course, always possible that some of the components will be 
too small or too fast to be detected, so the distributions can provide only a lower bound for 
the numbers of states. Although these distributions are much more susceptible to errors 
resulting from missed events than are distributions such as that of the total open time per 
burst (see below), it is remarkable that such errors should not much affect the number of 
components that are found, even when the time constants of the components are quite wrong 
(see Section 12 of Chapter 18, this volume, Hawkes et al. 1992). 

When the patch contains more than one channel, even when no multiple openings are 
seen, there is no way to be sure whether or not a particular opening originates from the same 
channel as the preceding opening. This complicates the interpretation of the results (see 
Chapter 18, this volume). In cases in which the openings are observed to occur in bursts, 
there is often reason to think that all of the openings in one burst may originate from the 
same channel, even if the next burst originates from a different channel, so the gaps within 
bursts may be easier to interpret. It is therefore usually interesting to analyze the characteristics 
of bursts of openings when it is possible to do so. Distributions that are relevant to this case 
are considered in Section 5.5. 

5.4.1. Multiple Openings 

If the experimental record has periods when more than one channel is open, measurement 
of apparent open lifetimes becomes more difficult. Such records are useful for averaging to 
simulate a relaxation or for calculation of the noise from the patch recording. They may also 
be useful for estimating the number of active channels in the patch (see Chapter 18, this 
volume) and for testing for the mutual independence of channels. In general, however, records 
with multiple openings are unsuitable for looking at distributions of open times and shut 
times because, if two channels are open, there is no way of telling, when one of them closes, 
whether the one that closes is that which opened first or that which opened second. 

Although it is possible to recover open- and shut-time distributions from records with 
multiple openings (Jackson, 1985), it is generally desirable to use records that have only 
one channel open at a time or only very few multiple openings. In order to use the method 
of Jackson (1985), the number of active channels must be known, and in most cases this is 
difficult to estimate accurately (see Section 8 of Chapter 18, this volume), and this method 
cannot cope with subconductance levels, which almost all channels show to some extent. 

When there are only a few multiple openings in a record, one way to deal with them 
is to omit all the openings in the group where multiple openings occur and to measure the 
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lifetimes of only the single openings before and after this group. The time between these 
openings is not a valid shut time and must be marked as "unusable" in the idealized list of 
shut times so that it can be excluded from the shut-time distribution. This procedure tends 
to select against long openings, so the open times thus measured will be slightly too short 
on average. An alternative procedure would be to take the length of the group of multiple 
openings as a single open time, which would make the open times too long on average. If 
there are enough multiple openings in the record that the bias could be substantial, then both 
of these methods could be used; if the two methods give results that disagree by enough to 
matter, then the number of multiple openings is too large to allow any simple analysis. 

5.4.2. Distributions of Open Times Conditional on Amplitude 

When there is more than one conductance level, it will usually be interesting to look 
separately at open times for each level. For example, in the data shown in Fig. 18 there are 
components with means of about 4 pA and 5 pA (i.e., conductances of about 40 pS and 50 
pS). When amplitudes have been fitted to each opening (Section 5.3.3), it is simple to go 
through each opening and select the openings whose amplitudes lie in a specified range. The 
histogram is then plotted using the durations of these openings. A method for calculating 
an optimum critical amplitude that minimizes the number of rnisclassified amplitudes has 
been given above, in Section 5.3.5. 

It is, of course, necessary to exclude openings that are too short for their amplitudes to 
be well defined. This is done by excluding from fitting (see Section 6.8.1) all values below 
tmin = 2Tr or 2.5T .. rather than by imposing a low resolution on the data, as described in 
Section 5.2.4. Such analyses obviously can not be done with computer programs that do not 
fit an amplitude to every opening but rely only on all-point amplitude histograms. 

5.5. Burst Distributions 

5.5.1 Definition of Bursts 

In extreme cases, it will be obvious to a casual observer that openings are occurring in 
groups, separated by long silent periods, rather than at random (exponentially distributed) 
intervals. For example, Colquhoun and Sakmann (1985) observed groups of channel openings 
separated by very short shut periods of average duration around 40 fJ.s, even though the 
agonist concentration was so low that these groups occurred, on average, at intervals of the 
order of 500 ms (i.e., 104 times longer). Empirically speaking, openings will appear to be 
grouped into bursts whenever the distribution of all shut times requires two (or more) 
exponentials to fit it. If the time constants for the exponentials are very different, as in the 
above example, the bursts will be very obvious, and it will usually be quite clear whether 
any particular shut period should be classified as being within a burst or between bursts. If 
the time constants differ by less than a factor of 100 or so, the distinction becomes progres
sively more ambiguous. 

Burst characteristics can be rigorously defined in at least two different ways. These two 
definitions will be, for practical purposes, equivalent in cases (such as the example given 
above) in which the bursts are very obvious, but in general, they are different. The definitions 
are as follows. 

1. A burst of openings can be defined empirically as any series of openings separated 
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by gaps that are all less than a specified length (tcrit, say). In the example given above, we 
might take terit = 0.4 ms; the probability that a gap with a mean duration of 50 J.lS will be 
longer than 0.4 ms is about 0.3 per 1000, and the probability that a gap with a mean duration 
of 500 ms is less than 0.4 ms is about 0.8 per 1000. Thus, there is little chance that a gap 
would be wrongly classified in this case. A suitable value for terit must be chosen by inspection 
of the distribution of all shut periods before burst analysis is attempted. 

2. A gap within a burst can be defined, for a particular mechanism, as a sojourn in a 
particular (short-lived) state (or set of states), for example, the blocked state in the case of 
a simple ion channel-blocker mechanism (see Section 4 of Chapter 18, this volume). Gaps 
between bursts are then similarly defined as sojourns in a different (long-lived) state or set 
of states. This definition was adopted by Colquhoun and Hawkes (1982; see Chapters 18 
and 20, this volume). Unlike the first definition, it depends on an interpretation of the 
observations in terms of mechanism. Conversely, though, it allows inferences about mecha
nism from the observations; it connects the theory with the observations. On the other hand, 
unlike the first definition, it is not an algorithm that can be automatically and empirically 
applied to a set of data regardless of subsequent interpretation. 

Choice of the Critical Shut Time for Definition of Bursts 

There is no unique criterion for the optimum way to divide an experimental record into 
bursts. At least three methods have been proposed. 

Suppose that we wish to find a value of terit that lies between two components of the 
shut-time distribution. The slower component has, say, an area as and mean ts, and the faster 
component is specified by af and 'Tf (see equation 30). 

Jackson et al. (1983) proposed that terit should be defined as the shut-time duration that 
minimizes the total number of misclassified intervals. This criterion involves solving for terit 
the equation 

~ e-/cri,/Tf = as e-/cri,lTs (45) 
'Tf 'Ts 

The criterion proposed by Magleby and Pallotta (1983) and by Clapham and Neher (1984) 
is to choose terit so that equal numbers of short and long intervals are misclassified. This 
involves solving for terit the equation 

(46) 

A third approach is to choose terit so that equal proportions of short and long intervals are 
misclassified (Colquhoun and Sakmann, 1985). In this case, terit is given by solving 

(47) 

None of these three equations can be solved explicitly, but the value of terit can be found 
easily by numerical solution by, for example, the bisection method (Press et aI., 1992) with 
'Tf and 'T, as the initial guesses between which terit must lie. 

The three methods defined by equations 45-47 all give different values for terit, though 
46 and 47 will be the same when as = af. When the areas for short and long intervals differ 
greatly, the first two methods (especially the first) may result in misclassification of a large 
proportion of the rarer type of interval, and so it may sometimes be felt to be more appropriate 
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to use the third method, despite the fact that it does not minimize the total number of 
misclassifications. 

When the time constants, Tf and Ts are very different, as in the example above, it will 
make very little difference which of the methods is used. But the difference that is needed 
is often underestimated. If the record contains N shut times (and N open times) the number 
of bursts that are found will be N times the probability that a shut time is greater than terit. 

The latter probability is, from equation 36, 

(48) 

In the case of the two-component shut-time distribution, 

so, if terit » Tf, the first term will be very small, and if terit « Ts, then the second term 
will be approximately as, so the number of bursts located will be Nas for any value of terit 

that satisfies these criteria. Nevertheless, equation 48 shows that the number of bursts found 
decreases monotonically as terit is increased. There is no genuine plateau where it becomes 
independent of terit. 

Consider, for example, the case where Ts is 100 times longer than Tf; e.g., Tf = 1 ms, 
and Ts = 100 ms. When af = as = 0.5, the three methods in equations 45-47 give, respectively, 
terit = 4.65 ms, 3.40 ms, and 3.40 ms. The total number misclassified per 100 openings is, 
respectively, 2.75, 3.34, and 3.34, but the first method misclassifies 4.5% of long openings 
and 0.95% of short openings, whereas the last misclassifies 3.34% of both. When there are 
more short openings than long (i.e., many openings per burst), sayar = 0.9, as = 0.1, the 
results are the same for the last method, but 45 and 46 give terit = 6.87 ms and 5.18 ms 
respectively, and equation 45 gives the total number misclassified per 100 as only 0.757, 
though 6.6% of long openings and 0.10% of short are misclassified. 

If, however, Ts is only 10 times longer than Tf, e.g., Tf = 1 ms and Ts = 10 ms, then, 
when af = as = 0.5, the three methods give terit = 1.80 ms, 1.80 ms, and 2.56 ms, respectively, 
but even equation 45 misclassifies 15.2 shut times per 100, with 22.6% of long shut times 
being misclassified. Clearly, a factor of 10 is not big enough. This is apparent immediately 
from the fact that 16.5% of intervals with a mean length of 1 ms are greater than terit = 1.80 
ms, and 16.5% of intervals with a mean length of 10 ms are shorter than 1.80 ms. 

Once bursts have been defined, many sorts of distribution can be constructed from the 
idealized record, some of which are now listed. 

5.5.2. The Distribution of the Number of Openings per Burst 

We simply count the number of apparent openings (r, say) in each burst. Unlike the 
other distributions to be considered, this is a discontinuous variable; it can take only the 
integer values 1,2, ... , 00. This number will, of course, be underestimated if some gaps are 
too short to be resolved (see Sections 5.2 and 6.11 and Chapter 18, this volume). If there is 
only one sort of open state, the number of openings per burst is expected to follow a geometric 
distribution, i.e., 

P(r) = (1 - p)p,-l (49) 

which decreases with r (because p < 1). The mean number of openings per burst is 
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/.I. = 1/(1 - p) (50) 

Further details are given in Sections 6.1 and 6.8. Notice that P(r) decreases by a constant 
factor (p) each time r is incremented by 1. This property is characteristic of exponential 
curves, and the geometric distribution is in fact the discrete equivalent of the exponential 
distribution encountered elsewhere. When the mean becomes large, the distribution approxi
mates the exponential distribution with mean /.I., namely, /.I. -Ie-rilL. 

In general, the distribution will be a mixture of several such geometric terms; the number 
of terms will often be equal to the number of open states but may be fewer in principle 
(apart from the problem that not all components may be detectable). The question of the 
expected number of components is quite complex and is discussed in Section 13.4 of Chapter 
18 (this volume). 

5.5.3. The Distribution of Burst Length 

This is the length of time from the beginning of the first opening of a burst to the end 
of the last opening. Clearly, it will be relatively unaffected by the presence of short unresolved 
gaps, compared with the distributions of open times and of number of openings per burst. 
The distribution should be described by a mixture of exponentials, as in equation 30, under 
the usual assumptions. The number of exponential components is, in principle, quite large, 
being equal to the number of open states plus the number of short-lived shut states (see 
Chapter 18, this volume; Colquhoun and Hawkes, 1982). In practice it is unlikely that all 
components will be resolved, and under some circumstances the burst length distribution 
may be well-approximated by a single exponential, as described in Section 5.3 of Chapter 
18 (this volume). 

5.5.4. The Distribution of the Total Open Time per Burst 

This is the total length of all the openings in each burst. It is also relatively insensitive 
to undetected brief openings or shuttings (shuttings that are brief enough to be missed will 
cause only a small error in measuring the total open time). This distribution should also be 
described by a mixture of exponentials, as in equation 30. It is, in principle, simpler than 
the distribution of burst length, because the number of components is expected to be equal 
to the number of open states (Chapter 18, this volume; Colquhoun and Hawkes, 1982). This, 
together with the fact that it is less sensitive to missed events than the distribution of apparent 
open times, makes it the best distribution to look at in order to make inferences about the 
(minimum) number of open states. The distribution of the total open time per burst is also 
of interest because it is predicted, surprisingly, that it will not be affected by a simple channel 
blocker (see Chapter 18, this volume). This prediction provides a useful way of investigating 
blocking mechanisms (Neher and Steinbach, 1978; Neher, 1983; Colquhoun and Ogden, 
1985; Johnson and Ascher, 1990). 

The distribution of the total shut time per burst may also be of interest for some sorts 
of interpretation (Colquhoun and Hawkes, 1982). 

5.6. Cluster Distributions 

Sakmann et al. (1980) observed that bursts of openings could themselves be grouped 
together into clusters of bursts with long gaps between clusters. They were looking at nicotinic 
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channels with high agonist concentrations, and the long silent periods between clusters 
occurred when all the ion channels in the patch were in long-lived desensitized states. In 
records of this sort it is often possible to say, with a high degree of certainty, that all of the 
openings in one cluster originate from the same individual ion channel. All of the shut times 
within a cluster can therefore be interpreted in terms of mechanism, even when the number 
of channels in the patch is not known (see Section 8 of Chapter 18, this volume). Such 
clusters are also useful for measurement of the probability that a channel is open (Popen)' as 
described in Section 5.1.7. 

Another case in which clusters of bursts (and superclusters of clusters) have been 
observed is the NMDA-type glutamate receptor (Gibb and Colquhoun, 1991, 1992). Measure
ments at very low agonist concentrations allow resolution of this unusually complex structure 
if the individual channel activations and subdivision of the record into bursts of openings 
and into clusters of bursts should aid in the interpretation of such records. The relevant 
theory has been given by Colquhoun and Hawkes (1982). This can, of course, be done only 
when the time constants of the shut-time distribution are sufficiently well separated (see 
Section 5.1). The mean gap between clusters should preferably be at least 100 times greater 
than the mean gap between bursts (within a cluster); and the latter should preferably be 100 
times greater than the shut times within a burst. 

Of course, we are quite free to treat the whole cluster as a long burst by an appropriate 
choice of terit (see Section 5.5.1); these bursts can then be analyzed like any other (they will 
have a rather complex distribution of gaps within bursts). Equally, we can ignore the clustering 
and analyze the individual bursts as above (the distribution of gaps between bursts would 
then be rather complex). 

When the record is divided into clusters of bursts, a large number of different sorts of 
distributions can then be constructed, for example, the length of the kth burst in a cluster 
and the distribution of gaps between bursts within clusters; further details are given by 
Colquhoun and Hawkes (1982). 

5.7. Measurement and Display of Correlations 

Certain types of mechanism can give rise to correlations between the length of one 
opening and the next or between the length of an opening and that of the following shut 
time. When this happens, the correlation will gradually die out over successive openings: 
there will be a smaller correlation between the length of an opening and the length of the 
next but one opening (described as a correlation with lag = 2), and so on for increasing 
lags. Such correlations have been observed for both nicotinic and NMDA receptors. Measure
ments of correlation can give information about mechanisms, in particular information about 
how states are connected, that cannot be found in any other way. The origin and interpretation 
of correlations are discussed in Section 10 of Chapter 18 (this volume), where appropriate 
references will be found. We shall discuss here the ways in which correlations may be 
measured and displayed. 

5.7.1. Correlation Coefficients and Runs Test 

Perhaps the simplest way to test for correlations is to use a runs test, as employed by 
Colquhoun and Sakmann (1985). To do this, open times (or shut times or burst lengths, etc.) 
that are shorter than some specified length (e.g., 1 ms) are represented as 0, and values 
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longer than this length are represented as 1. We then ask whether runs of consecutive 0 
values (or of consecutive 1 values) occur with the frequency expected for independent events. 
If, for example, long openings tend to occur together, this will produce long runs of 1 values. 
Say there are no zero values, n\ unity values, and n = no + n\ values altogether. The number 
of runs, NT say, in the data is then counted, a run being defined as a contiguous section of 
the series that consists entirely of (one or more) 0 values or entirely of 1 values (thus 110001 
has three runs). If the series is random, then the mean and variance of NT will be 

(51) 

The test statistic 

(52) 

will have an approximately Gaussian distribution with zero mean and unit standard deviation, 
so a value of Izl larger than about 2 is unlikely to occur by chance. 

The extent of correlation for any specified lag m can be calculated as a correlation 
coefficient, r m' If the observations (e.g., open times, shut times, burst lengths, etc.) are denoted 
tJ, t2, ••• , tm with mean t, then the correlation coefficient is calculated as 

i=n-m :L (t; - 1)(tHm - I) 
;=\ 

r = --'--------m i=n (53) 

:L (t; - 1)2 
;=\ 

5.7.2. Distributions Conditional on Length of Adjacent Event 

The calculations in the last section give no visual impression of the strength of correla
tions, but various graphical displays that do so can be made. For example, the distribution 
of the length of openings conditional on the length of adjacent shut time can be constructed. 
Examples of such conditional distributions are shown in Chapter 18, this volume, (Section 
10, Fig. 13). If, as in these examples, short openings tend to occur next to long shuttings, 
then the distribution of open times, conditional on the open time being next to a long shutting, 
will show an excess of short openings (relative to the overall open-time distribution). In 
order to construct such a conditional distribution from experimental data, it is necessary to 
specify a range of shut times rather than a single value. For example, to construct a distribution 
of open times conditional on the adjacent shut time being between 0.05 and 0.3 ms, simply 
locate all the open times that are adjacent to shut times that fall in this range and plot the 
histogram of these openings. 

A more synoptic view can be obtained by restricting attention to the mean open times 
rather than looking at their distribution. Define several shut-time ranges and then plot the 
mean open time (for openings that are adjacent to shut times in each range) against the 
midpoint of the range. It will generally be best to center these shut-time ranges around the 
time constants of the shut-time distribution. The mean open time may also be plotted against 
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the mean of the shut times in the range rather than against the midpoint of the range. An 
example is shown in Chapter 18 (this volume, Fig. 12). The mean open time decreases as 
the adjacent shut time increases. 

A third way to display correlation information is to construct a two-dimensional depen
dency plot (Magleby and Song, 1992). This plot is explained and illustrated in Chapter 18 
(this volume, Section 10). 

5.7.3. Distribution of Open Time Conditional on Position within the Burst 

The distributions of quantities such as (1) the length of the kth opening in a burst or 
(2) the length of the kth opening in a burst for bursts that have exactly r openings are 
potentially informative when there are correlations in the data. If these distributions differ 
for different values of k (or of r), these variations can be tested against the predictions of 
specific mechanisms, which can be calculated as described by Colquhoun and Hawkes, 1982; 
Chapter 20, this volume). Such distributions are, however, likely to be rather sensitive to 
undetected brief events (see Section 6.11 below; Section 12 of Chapter 18, this volume). 
Their potential has yet to be exploited. 

5.8. Distributions following a Jump: Open Times, Shut Times, and 
Bursts 

It is often of interest to measure single-channel currents following a rapid (step-like) 
change of membrane potential or of ligand concentration (a voltage jump or concentration 
jump). The principles underlying such measurements are discussed and exemplified in Section 
11 of Chapter 18 (this volume). 

Notice that application of a rectangular pulse (of membrane potential or of ligand 
concentration) is actually two concentration jumps. In terms of macroscopic current, the first 
step is sometimes referred to as the "on-relaxation," and the second, when the stimulus is 
returned (usually) to the prejump condition, is referred to as the "off-relaxation." In the 
context of voltage-activated channels (but, for no particular reason, not for agonist-activated 
channels), the off-relaxation is often referred to as a "tail current"; it is probably rather 
unhelpful, though harmless, to use a separate term for an off-jump, since it does not differ 
in principle from an on-jump. Sometimes attention is focused mainly on the on-relaxation 
(e.g., when a step depolarization opens a voltage-activated channel); sometimes the main 
focus is more on the off-relaxation (e.g., the events following a brief pulse of agonist applied 
to an agonist-activated channel). 

The distribution of the latency until the first opening occurs is of crucial importance for 
understanding topics such as the shape of synaptic currents or the mechanism of inactivation of 
sodium channels (see Chapter 18, this volume). In principle it is easy to measure it from 
experimental records. The main problem in practice is that it cannot be interpreted unless 
there is only one channel in the patch (or at least a known number of channels). This is 
often hard to achieve. 

Even when the channel shows no correlations, the distribution of first latencies is 
expected to differ from that of other shut times (see Chapter 18, this volume), though in this 
case the distributions of all subsequent shut and open times should be the same as those at 
equilibrium. When the channel shows correlations, the distributions (and hence means) of 
the first, second, ... open time, and shut time, after the jump may differ from their equilibrium 
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values. If the channel also shows correlations between burst lengths, then the distributions 
of the first, second, etc. burst length following the jump will also differ. After a sufficient 
number of openings has occurred, the eqUilibrium distributions will eventually be attained. 
Further details and examples can be found in Chapter 18 (this volume, Sections 10 and 11). 

5.8.1 Delays in the Recording System 

When first latencies are being measured, it is obviously very important that we know 
precisely when the step was applied (Le., where t = 0 lies on the experimental record). 

Voltage Jumps 

In the case of voltage jumps, this problem has been discussed in detail by Sigworth 
and Zhou (1992). It is important to compensate properly for the large capacitative current 
artifact that accompanies a voltage jump applied with the patch clamp. Methods for doing 
this are discussed in Chapter 7 (this volume) and by Sigworth and Zhou (1992). The voltage 
jump may not be applied to the patch at the precise moment that the command pulse is 
applied. This can happen because vagaries of the relative timing of DAC outputs and ADC 
inputs: these depend on the characteristics of the computer's real-time interface and on 
precisely how it is programmed. Delays may also occur when the command pulse is filtered 
(to reduce its maximum rate of rise). The true t = 0 point on the record can be estimated 
by measuring the time from when the command pulse starts to the midpoint of the instanta
neous current (the current that flows "instantly" through channels that are already open when 
the potential changes). Alternatively, the capacity compensation can be slightly misadjusted, 
and then one can measure the time to the peak of the resulting capacitative current. These 
procedures are illustrated by Sigworth and Zhou (1992). 

Concentration Jumps 

In the case of concentration jumps, delays may be much greater than for voltage jumps. 
Typically, a jump is applied to an outside-out patch by moving (by means of a piezoelectric 
device) a theta glass pipette from which two solutions flow, so the interface between the 
solutions moves across the patch. Delays arise primarily because of the time taken for the 
command pulse to be translated into movement of the piezo and the time taken for the 
solution leaving the theta glass to reach the patch. The delay can be measured as follows. 
Break the patch at the end of the experiment and flow a hypotonic solution through one side 
of the application pipette; then measure the time from application of a command pulse to 
the piezo to the appearance of a junction response. It is obviously important that the relative 
position of patch and application pipette remains the same throughout. It is still better if the 
measurement of delay can be made with the patch intact, as it is during the experiment proper. 
This may be possible, for example, by applying a step change in potassium concentration while 
a potassium-permeable channel is open (the channel opening itself can be used to trigger 
the command pulse to the piezo). This method was used by Colquhoun et al. (1992) to 
estimate the rate at which concentration changes at the patch surface; it is also an ideal 
method to measure delay (as long as an appropriate channel can be found). 

There will also be a delay in the current-measurement pathway, essentially all of which 
is caused by filtering. An eight-pole Bessel filter introduces a delay (in seconds) of O.51!fc, 
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where!c is the - 3 dB frequency in Hertz. For example, a I-kHz filter introduces a delay of 
510 f.Ls (Sigworth and Zhou, 1992). 

The fitting of the results of jump experiments is considered later, in Section 6.13. 

5.9. Tests for Heterogeneity 

It is, unfortunately, quite common for more than one sort of channel to be in the patch 
of membrane from which a recording is made. This may be the case not only with native 
receptors but also with recombinant channels expressed in oocytes (e.g., Gibb et aI., 1990); 
injection of a defined set of subunit RNAs does not necessarily guarantee that a single well
defined sort of channel will be produced (see also Edmonds et aI., 1995a,b). This sort of 
heterogeneity will make distributions confusing and serious kinetic analysis impossible. It 
is, therefore, important to know when it is present. 

One criterion that has been used for agonist -activated channels is based on P open measure
ments (see Section 5.1.7). At high agonist concentrations, when the probability of the channel 
being open is high, openings appear in long clusters separated by even longer desensitized 
periods (Sakmann et aI., 1980; see also Section 5.6). Because all of the openings in one 
cluster are likely to arise from the same individual channel, a value of P open can be measured 
from each cluster (by integration or' by measuring individual open and shut times; see 
Colquhoun and Ogden, 1988, for example). The next cluster may arise from a different 
channel, but it should give, within sampling error, the same value for P open if all the channels 
in the patch are identical. 

An excellent method for assessing whether the P open values (or open times or shut times, 
etc.) vary to a greater extent than expected from sampling error was proposed by Patlak et 
al. (1986). They used a randomization test (an elementary account of the principles of 
randomization tests is given by Colquhoun, 1971). This method has been used, for example, 
by Mathie et al. (1991) and by Newland et al. (1991). Suppose that measurements are made 
on N clusters of openings, and ni is the number of openings in the ith cluster. The observed 
scatter of the measurements, Sobs, can be measured as 

(54) 

where Yi represents the measurement of interest (e.g., Popen or mean open time or mean shut 
time) for the ith cluster. The probability of observing a value of Sobs (or larger) on the null 
hypothesis that the clusters are homogeneous, can then be found as follows. Take all the 
measured open and shut times from all the clusters as a single group and select at random 
from them N groups of ni values. Then calculate the scatter from these artificially generated 
clusters, using equation 54 in exactly the same way as was done for the real measurements; 
this will produce a value that may be denoted Sran. This randomization procedure is then 
repeated many times (e.g., 1000 or more). A histogram can be constructed from the values 
of Sran so generated. The fraction of cases in which Sran exceeds the observed value, Sobs, is 
the required probability. If it is very small, then it is unlikely that the null hypothesis was 
correct, and it must be supposed that the channels are heterogeneous. 
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6. The Fitting of Distributions 

6.1. The Nature of the Problem 

The term fitting means the process of finding the values of the constants in some 
specified equation that produce the best fit of that equation to the experimental data. This 
definition implies that one must (1) decide on an appropriate equation to fit to the data, (2) 
decide what the term "best" means, and (3) find an algorithm that can then find the best fit. 
It is perhaps worth noting that the process of fitting involves thinking in a somewhat inverted 
way. Normally, one thinks of the data as being variable and the parameters in an equation 
(e.g., the slope and intercept of a straight line) as being constants. During the process of 
fitting, though, the data are constant (whatever we happened to observe), but the parameters 
("constants") are varied to make the equation fit the observations. 

There are two quite different approaches to fitting, which may be called (1) empirical 
fitting and (2) fitting a mechanism directly. In the former case, exponentials (or geometrics) 
are fitted without necessarily specifying any particular mechanism; the parameters are the 
time constants and areas of the exponential components. In the latter approach, the parameters 
to be fitted are not the time constants of the exponentials but the underlying rate constants 
in a specified mechanism. The former approach is by far the most common, and it will be 
discussed next. The direct fitting of mechanisms requires consideration of missed events and 
will be discussed later, in Section 6.12. 

6.1.1. Empirical Fitting of Exponentials 

In practice, this usually means fitting a mixture of exponential distributions to data that 
consist of a list of time intervals (e.g., a list of apparent open times, shut times, or burst 
lengths, found as described earlier). Similarly, a mixture of geometric distributions may be 
used to fit the number of openings per burst, etc. This process is not entirely empirical, 
however, because there is good reason to expect that these may be appropriate equations. 
Any "memoryless" reaction mechanism is expected to result in observations that can be 
described by exponentials (or geometrics), as described in Chapter 18 (this volume), so they 
are obviously sensible things to fit. There is, of course, no guarantee that they will fit 
adequately. For example, (1) the effect of limited time resolution will, in principle, result in 
nonexponential distributions (e.g., Section 6.11, Chapter 18, this volume; Hawkes et ai.. 
1990, 1992), or (2) the transition rates may not be constant, e.g., because membrane potential 
or ligand concentration are not constant, or (3) the mechanism may be genuinely non
Markovian. These topics are discussed at greater length in Chapter 18 (this volume). 

The general form for a mixture of exponential densities has already been given in 
equation 30. If aj represents the area of the ith component, and Tj is its mean or time constant, 
then, when there are k components, 

f(t) = alT,le-1/T + a2Tile-liT2 + ... 
k 

= L ajTjle-I/Ti (55) 
j=l 

The areas add up to unity, i.e., Iaj = 1, and the overall mean duration is IajTj. Although it 
was stated above that the areas are proportional, roughly speaking, to the number of events 
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in each component, it must be emphasized that, in general, the areas and time constants 
(means) of the components have no separate physical significance. An approximate physical 
interpretation of the components may be possible in particular cases (some examples are 
given in Chapter 18, this volume), but they must be demonstrated separately in each case. 
The density is sometimes written in the alternative form 

k 

f(t) = ~ Wie-tlTi 

i=1 

(56) 

where the coefficients Wi are the amplitudes (dimensions S-I) of the components at t = 0. 
Clearly, they are related to the areas thus: 

(57) 

The cumulative exponential distributions have already been given in equations 35 and 36. 

6.1.2. Empirical Fitting of Geometrics 

The general form for a mixture of geometric distributions (see Section 5.5.2) with k 
components, is 

k 

Per) = ~ aiel - pJpi- l , r = 1,2, ... , 00 (58) 
i=1 

where ai is the area of the ith component, and Pi is a dimensionless parameter (Pi < 1) (see 
Chapters 18 and 20, this volume). Alternatively, this can be written as 

k 

Per) = ~ wiPi- 1 

i=1 

(59) 

where the coefficients Wi are the relative amplitudes, at r = 1, of the components. The area 
and amplitudes are related by 

(60) 

The "means", fl.i' of the individual components (which, as for exponentials, will not generally 
have any separate physical significance) are 

fl.i = 1/(1 - pJ (61) 

and the overall mean is 

(62) 
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Thus, yet another general form for a mixture of geometric distributions is 

k 

P(r) = L aj~il(1 - ~ily-l (63) 
i=l 

Under certain circumstances (see Section 13.4 of Chapter 18, this volume), it is predicted 
that there will be a component with p = 0, i.e., from equation 62, a component with a mean 
of exactly one opening per burst. Such a component will contribute to P(I) only. 

The cumulative form of the geometric distribution, i.e., the probability that we observe 
n or more (e.g., the probability of observing n or more openings per burst) is 

k 

P(r ~ n) = L aiPi- 1 

j=l 

6.1.3. The Numher of Parameters to Be Estimated 

(64) 

In the cases of both exponential and geometric distributions there are 2k - 1 parameters, 
the values of which must be estimated from the data by the fitting process. For exponentials 
there are k different time constants, Tj (or rate constants, h. j = I/Tj) and k - 1 values for the 
areas, aj (the areas must sum to 1, so estimation of k - 1 values defines the kth value). For 
geometries, the parameters could be k values of ~i (or of p;), plus k - 1 values for the areas, 
aj. Sometimes it may be desirable not to estimate all of these parameters from the data but 
to fix the values of one or more of them (they might, for example, be fixed at values that 
have already been determined from earlier experiments). This should improve the precision 
of the remaining parameters that are estimated from the data. 

It will always be sensible to constrain the values of the time constants, Tj, to be positive 
when fitting exponentials. Negative values are obviously impossible, so the fitting routine 
should be prevented from trying negative values. Similarly, in fitting geometries, the values 
of ~j should be constrained to be not less than 1 (or, if fitting Pj, the pj values should be 
constrained to lie between 0 and 1). When fitting steady-state distributions, the areas, ai' of 
the components are expected to be nonnegative too, so it may help the fitting process if they 
too are constrained. However, some sorts of distribution (for example that of the shut time 
preceding the first opening after a jump) may well have one or more negative areas; in such 
cases it is important that the program not constrain areas to be positive (see Sections 7 and 
11 of Chapter 18, this volume). 

6.2. Criteria for the Best Fit 

The usual approach is to define a measure of the goodness of fit (or of the badness of 
fit) of the fitted distribution to the experimental observations. The parameter values are then 
chosen to maximize the goodness of fit (or to minimize the badness of fit). Different measures 
of goodness of fit will give different estimates of the parameters from the same data. 

For conventional curve fitting (e.g., to ordinary graphs or to macroscopic currents), the 
weighted least-squares criterion is usually supposed (and in some cases has been shown) to 
be the best method. In such cases the distribution of the observations is almost always 
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unknown. In the single-channel context, though, the problem is rather different. The distribu
tion of the observations is known-it is what is being fitted. It is, therefore, possible to do 
better by using the maximum-likelihood approach. 

The likelihood function provides a measure of goodness of fit and is discussed in 
Sections 6.5-6.9. Other, less good, methods appear in the literature, e.g., the XZ statistic 
(which provides one measure of badness of fit and is discussed in Section 6.4). Still worse, 
one can find some wholly inappropriate use ofleast-squares criteria, or even "curve stripping" 
on semilogarithmic plots, but they are not worth discussion here. 

All fitting methods will give much the same results if the amount of data is very large 
and the fit very close, but this is rarely the case in the real world. The maximum-likelihood 
method is undoubtedly preferable to any other for the purposes of fitting distributions, and 
the speed of computers is now such that there is no reason to use any other method. 

6.2.1. How Many Components Should Be Fitted? 

If a specified mechanism is being fitted (see Section 6.12), the mechanism dictates the 
number of exponential components, so there is no problem. But when exponentials are being 
fitted without reference to a mechanism, it is often difficult to decide how many components 
should be fitted to the observations. For example, in Fig. 15 the shut-time data are shown 
fitted with both a two-exponential fit and a three-exponential fit. The fastest and slowest 
components are obvious, but the intermediate component (with l' = 1.31 ms) has only 3.7% 
of the area and could easily be missed, especially if the log display were not used and the 
histogram that reveals this component most clearly (Fig. 15B) were not inspected. It could 
also be missed easily if the amount of data were smaller. 

There are three ways in which to judge the number of components that are needed: (1) 
visual inspection of the histograms-e.g., in Fig. 15 the need for the third component is pretty 
convincing when the appropriate display is inspected. (2) By checking the reproducibility of 
the time constants and areas from one experiment to another (if they are not reasonably 
reproducible you are probably trying to fit too many components). And (3) statistical tests -
the question can be asked 'is there a statistically-significant improvement in the fit when an 
extra component is added?' The second of these methods is by far the most reliable. 

The Statistical Approach 

The statistical approach is easy to apply when the fitting is done by the method of 
maximum likelihood (see below). This and related questions are discussed by Hom (1987). 
Denote as L the maximum value for the log(likelihood), i.e., the value evaluated with the 
best-fit parameters, L(S) (see Sections 6.5-6.8). Suppose that the same data are fitted twice. 
First we fit kl components (and hence nl = 2kl - 1 parameters), yielding a maximum value 
for the log-likelihood of L l • Next we fit the same data again, but with more components 
(say kz components and hence nz = 2kz - 1 parameters); this time the maximum value for 
the log-likelihood is Lz. With more free parameters to adjust, the second fit is bound to be 
better (so Lz > L1), but is it significantly better or not? The extent of the improvement in 
fit can be measured by 

R=Lz-Lz 

where R is the log likelihood ratio, i.e., the logarithm of the ratio of the two likelihoods, 
defined such that the ratio is greater than 1 (R > 0). It can be shown (e.g., Rao, 1973) that, 
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if the correct number of components were klo then 2R would have (for large samples) a X2 

distribution with n = n2 - n\ degrees of freedom. Thus, by obtaining the probability 
corresponding to 2R (by computation or from a X2 table), it is possible to judge whether the 
second fit is significantly better. The P value so found is the (approximate) probability that 
fitting with k2 components would produce, by chance, an improvement in fit equal to (or 
greater than) that observed, if in fact the fit with k\ components were correct. If P is 
sufficiently small, it would be concluded that chance alone is unlikely to account for the 
observed improvement, so the larger number of components is justified. 

The Criterion of ReprodUcibility 

The problems with the statistical approach are, as for all significance tests, of two sorts. 
First, a nonsignificant difference does not mean that there is no difference, merely that a 
difference could not be detected (possibly because it was not a good experiment). Second, 
the test copes only with random errors and cannot allow for the systematic errors that are 
so common in real experiments. Nevertheless, if the experiment cannot be repeated, this is 
probably the best approach. 

Normally, though, a distribution (such as that in Fig. 15) is not determined only once 
but many (or at least several) times in separate experiments. The question then arises about 
what should be done if some experiments appear to be fitted well by two components but 
others require three. This question shows the inadequacy of the statistical approach. The 
number of components that are required is dictated by the mechanism involved and does 
not change from one experiment to another (as long as they are all done with the same 
channel type and are not invalidated by heterogeneity of the channels). However, the amount, 
and quality, of the data, and hence one's ability to detect components, may vary considerably 
from experiment to experiment. This is illustrated nicely by the history of the data shown 
in Fig. 15. At first distributions of this sort were usually fitted with two components. However, 
it became apparent that quite often the data needed three components, as in the case shown. 
Once this had become quite convincing, the earlier data sets were all refitted with three 
components, whether or not this produced a significant improvement in any individual 
experiment. The results showed that, within reasonable limits, the time constant and area of 
all three components were reproducible from one experiment to another. This is the strongest 
sort of evidence for the need for three components, and it is the procedure that should be 
adopted whenever possible. 

6.3. Optimizing Methods 

In order to begin, one should obtain a good optimizing computer subroutine or procedure. 
These are general-purpose programs that are designed to find (given initial guesses for them) 
the parameter values that minimize (or maximize) any specified function and so can be used 
to maximize the likelihood (or, equivalently, to minimize the negative likelihood-most 
routines are designed to mimimize). 

The user has to supply only a subroutine or procedure that, when supplied with values 
for the parameters, will calculate a value for the quantity to be minimized (e.g., a value for 
the minus log-likelihood; see below). The minimization subroutine then adjusts the values 
for the parameters, and for each set of parameters it calls the user's routine to see how well 
the parameters fit the data. It is not expected that the user's routine will itself change the 
parameter values (though it can be useful to have it do so, as described below). 
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The fitting process is shown graphically in Fig. 19 in the case where there is only one 
parameter to be estimated. We simply find the value of the parameter that corresponds to 
the maximum log-likelihood. In the case where two parameters are to be fitted, we would 
need a three-dimensional version of this graph, with the possible values of the two parameters 
on the x and y axes and the value of the likelihood that corresponds to each pair of parameter 
values sticking out of the paper on the z axis. This sort of graph is often shown as a contour 
map in two dimensions, with parameter values on x and y axes and the corresponding 
likelihood values marked on contours. The contour map portrays, in geographic terms, a 
hill, and the problem is now simply to find the top of the hill; this is the maximum likelihood, 
and the pair of parameters that are the coordinates of the maximum are the maximum-likelihood 
estimates of the parameters. Since optimizing subroutines usually minimize functions, the 
more common geographic analogy is that we are searching for the bottommost point in a 
valley. These graphical analogies are usually an excellent way to picture what is happening 
(though in ill-behaved cases it is possible for contour lines to cross each other, which is not 
allowed in ordinary maps; e.g., see Colquhoun, 1971, Fig. 12.8.2). 

There are very many programs available. They may be found in many standard libraries 
(such as NAG or IMSL) or by inquiry from your local computer center. The main choice 
lies between simple search methods and more complicated gradient methods. A much faster, 
noniterative method for fitting macroscopic exponential curves by use of Chebyshev polyno
mials is available, but it is inappropriate for fitting distributions. Even for macroscopic 
exponentials, it cannot be recommended until such time as the properties of the estimates it 
provides (in comparison with least-squares estimates) have been fully explored. 

6.3.1. Simple Search Methods 

The simple search methods look for the bottom of a valley by trying various sets of 
parameter values and simply noting whether one set of values is better than the previous 
set. "Better" means "further down the valley"; i.e., the user-defined subroutine produces a 
smaller value of the quantity to be minimized. 

An advantage of search methods is that they usually converge (approach the bottom of 
the valley) reliably, even with poor initial guesses or when the function is ill behaved. These 
properties can be quite important. It is a considerable advantage in practice to be able to 
give rather rough initial guesses (it takes time to find good guesses). Even more important 
is the ability of these methods to cope with any sort of constraint on the values being fitted. 
For example, in fitting the time course of single-channel openings, as described in Section 

Figure 19. The log-likelihood, L(T), of a particular value of the time constant, T, plotted against T (continuous 
line) for the case of a simple exponential distribution (from equation 71). Graphs are given for samples of 
size n = 3 (A), n = 10 (B), and n = 100 (C). The dashed line shows the quadratic curve that has the same 
curvature at the maximum as L(T), namely Q(T) = Q(T) - (T - Tf12s2 where s = TI In (see equation 80). 
The curves have been drawn for the case T = I, and the abscissa can be interpreted as TIT. In graph A, the 
definition of standard deviations and likelihood intervals is illustrated for the case of m = 2 unit likelihood 
intervals and the corresponding :!::2-standard-deviation intervals (see Table I and Section 6.7.2). A horizontal 
dashed line is drawn two units below the maximum, i.e., at L(T) - 2. The points at which this intersects the 
continuous line give the lower and upper limits (Tlow and Thigh) for T. The points of intersection with the 
dashed line give the 2-standard-deviation limits, T :!:: 2S(T). For large samples, the dashed and continuous 
lines become similar, so the two approaches to error specification give similar results (see also Table I). 
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4.2, it is desirable to constrain the amplitude of a short opening to be the same as that of 
the nearest opening that is long enough to have a well-defined amplitude. But as the parameter 
estimates are adjusted, what is considered "short" and "long" may change, so the function 
being fitted changes as the fitting progresses, and this function may itself change the parameter 
values. A similar sort of thing occurs in fitting distributions. If the k - 1 areas being fitted 
are adjusted by the minimization routine so that they add up to 1 or more, and it is desired 
to prevent the kth area being negative (this is not always desirable-see Section 6.1.3), then 
the function that is being minimized can scale all the area values down so they add up to, 
say, 0.99, and return the altered values to the minimization routine. Such tricks are very 
useful, but gradient methods tend to take grave exception to them, whereas search methods, 
which care only about whether the function is reduced or not, carry on quite happily. 
Search methods also take little computer memory (though this is rarely critical with modern 
computers). On the other hand, search methods are usually rather slow, especially in the 
later stages of convergence when high precision is demanded. 

Simple search methods include patternsearch (see Colquhoun, 1971), and the simplex 
method (NeIder and Mead, 1965; O'Neill, 1971; Hill, 1978; Press et al., 1992). Care is 
needed because there are many versions of simplex in circulation, some of which are not 
very good. The version given by Press et al. (1992), called AMOEBA, appears to be quite 
satisfactory; the version they give is somewhat inconvenient to use as it stands, so an example 
is given, in Appendix 3 (Section A3.4), of a small subroutine that may conveniently be used 
to call AMOEBA. The program as it stands is rather minimal; it can be improved, for example, 
by adding code (1) to print out the progress of the iterations, (2) to abort the program from 
the keyboard if it appears to be stuck, (3) to test the convergence by the parameter step size 
rather than by the reduction in the function, (4) to keep track of the absolute minimum 
encountered (which may sometimes be better than the final result), and (5) to restart the 
minimization if a local search after convergence suggests that further improvement is possible. 
A particularly valuable addition is code to allow the values of specified parameters to be 
fixed (e.g., at values determined from other experiments) rather than estimated. This can be 
achieved by defining the parameter array (theta, in Section A3.4) to contain all of the 
parameters (so it can be used for calls to the function or for printing the current parameter 
values), but defining a second array from which the fixed values are omitted for use by 
simplex when it is adjusting the parameter values. 

6.3.2. Gradient Methods 

There are many types of gradient methods (see Press et aI., 1992, for a brief survey). 
They have in common the characteristic that, given a set of parameter values that define a 
point on the surface of the value, they calculate the slope of the surface at that point and 
use this value to work out the next set of parameter values to try. For example, they may 
work out the direction of steepest descent and follow this path in the hope that it is the 
fastest way to the bottom of the valley. 

Gradient methods fall into two main categories, as far as the user is concerned. One 
category requires only that the user supply a subroutine to calculate, for a specified set of 
parameter values, the value of the function to be minimized, exactly as for search methods. 
The other category requires that, in addition, the user supply a subroutine to calculate the 
first derivatives of the function to be minimized. The latter type allows gradients to be 
calculated faster, but is much less flexible for the user, because for each function that is to 
be fitted the user must differentiate it algebraically and write a subroutine to evaluate these 
derivatives, which may be quite complicated. 
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The gradient methods usually take fewer iterations to converge and so may be much 
faster than search methods. On the other hand, they often converge less reliably and require 
better initial guesses, and it may be difficult or impossible to impose the required constraints 
on the fit with this sort of method, as exemplified above. 

6.4. The Minimum-x2 Method 

This method is really obsolete, but it will be described here because it has been quite 
widely used in the past and will give satisfactory results if the data are good enough. In 
order for this method to be used, the observations must first be grouped into a histogram. 
The data for the fitting are the frequencies of the observations in each bin. Thus, the parameter 
values will depend, to some extent, on the bin widths that are chosen to display the histogram 
(this is not the case with the maximum-likelihood method). The observed number of values 
in the jth bin will be denoted r/". The X2 statistic is a measure of the deviation of this 
observed value from the fitted (or calculated or expected) frequency. The value of the expected 
frequency depends, of course, on the values of the parameters (time constants, etc.) that are 
chosen, so we shall denote itJi(6) where 6 represents the values of all the parameters. For 
example, when fitting two exponentials, the parameters could be Tit T2, and ah so 6 = 
[Tl T2 all (this is, in the notation of the appendix to Chapter 20, this volume, a vector, but 
it can be read here as a set of parameter values). The expected frequency is calculated from 
the equation for the distribution (e.g., equation 55), which, as discussed in Section 5.1.5, is 
approximately proportional to the frequencies if the bin width is not too wide. The values 
of the parameters are adjusted (by the optimizing program) to minimize X2, i.e., to minimize 
the badness of fit. 

The X2 statistic is defined as 

(65) 

where nbin is the number of bins in the histogram. Notice that, as in any fitting procedure. 
the data are treated as constants, and the parameters are treated as variables. 

This method can be regarded as a sort of weighted least-squares approach; the denomina
tor would be an estimate of the variance (reciprocal weight) of the numerator for a Poisson
distributed variable (the observed frequency in a given bin should be multinomially distrib
uted, and this may approximate a Poisson distribution). 

The fact that the denominator depends on the values of the parameters slows down the 
fitting procedure, and sometimes a modified X2 method has been used in which the observed, 
rather than the expected, values are used in the denominator. In other words, the parameters 
are chosen to minimize 

(66) 

If an observed value, nbs, is zero, it must be replaced by unity (or by an average value over 
nearby bins) to avoid division by zero. 

The X2 criterion, though reasonable, is arbitrary. It is also clear that, in principle, some 
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infonnation must be lost when the original time intervals are grouped into bins. For example, 
observations of 1.1 msec and 1.9 msec are treated as though they were both 1.5 msec if they 
are pooled into a bin from I to 2 msec. There is another, more natural way to fit the results 
that does not involve these disadvantages, namely, the method of maximum likelihood. This 
method also allows sensible estimates of error for the fitted parameters and is described next. 

6.5. The Method of Maximum Likelihood: Background 

When we have done an experiment and wish to choose the best values of the parameters, 
it seems sensible to ask what values of the parameters are, in the light of our data, the most 
probable. Although this may appear an innocent enough question, it has given rise to fierce 
debate for over three centuries. The debate still continues. The essential argument is about 
whether it is proper to talk about the probability of a hypothesis at all. If we measure durations 
of ion channel openings, we imagine that there is some real true value of the mean open 
time. Suppose our observed mean is 8 ms, and the true mean (which is never known of 
course) is 10 ms. The probability of the hypothesis that the true mean is 10 ms is unity; the 
probability that it is anything else (including 8 ms) is zero. Therefore, one cannot speak of 
the probability that the parameters have particular values (not, at least, if we wish to retain 
the familiar frequency interpretation of probability). Most people now think that the best 
way to circumvent this problem is to speak not of the probability of a hypothesis (given 
some data) but of the probability of getting the data (given an hypothesis). This latter 
probability was first used to measure the plausibility of hypotheses by Bernoulli in 1777; it 
was greatly developed and popularized by R. A. Fisher, who tenned it likelihood from 
1921 onwards. 

The probability of observing the data, given a hypothesis, is just an ordinary probability 
distribution if the hypothesis is regarded as fixed and the data as varying. However, when 
we regard the data as fixed (as they are when we wish to analyze a particular experiment) 
and the hypothesis as varying, then this quantity no longer behaves like a probability, and 
we tenn it the likelihood of the hypothesis. In summary, denoting likelihood by Lik, 

Prob[data I hypothesis] == Lik[hypothesis I data] (67) 

In this expression, the vertical bar stands for "given" (see Section 2 of Chapter 18, this volume). 
The method of maximum likelihood consists of varying the values of the parameters 

(the hypothesis) so as to maximize expression 67. Thus, we choose the parameter values 
that maximize the probability of observing our data. 

This approach can be justified in two ways. The likelihood advocate would simply say 
that if you wish to use parameter values (such as minimum X2 values) that make the data 
less probable than his, then it is for you to justify your apparently perverse decision (see 
Edwards, 1972). Another approach is to examine closely the statistical properties of the 
method, which are, in most cases, at least as good as those of any other approach (see 
Rao, 1973). 

Of course, in order to calculate the probability of getting the data, given some hypothetical 
parameter values, we need to know what probability distribution the observations follow. In 
most experimental work, this is not known with any certainty, so, although the method of 
least squares is actually the same as the method of maximum likelihood if errors follow a 
Gaussian distribution, the fonner term is usually used because knowledge of the distribution 
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is uncertain. However, with data of the sort we are discussing here, we do know about the 
distribution. It is the very thing that we look at and wish to fit; this is why maximum 
likelihood is a natural procedure to adopt. 

6.6. Maximum Likelihood for a Simple Exponential Distribution 

These ideas can most easily be made clear by discussing data that follow a simple 
exponential distribution before going on to more general cases. 

The data consist, say, of n time intervals, which we can denote tl, t2 ••. , In. These are 
fixed, and this list provides the data on which fitting is based. Histogram frequencies are 
not used, and the values obtained are quite independent of the bin width(s) that are chosen 
for the histogram. It is still necessary to construct a histogram in order to display the final 
results of the fit, and the appearence of the histogram will vary to some extent according to 
the bin width(s) that are chosen, but the fitted line will not. 

What, given some hypothetical value of the time constant T, is the probability of making 
these observations; in other words, what is the likelihood of this value of T? The time values 
are (in principle) continuous variables, so we must use probability densities rather than 
probabilities (but this does not matter much because we only need something that is directly 
proportional to the likelihood). The simple exponential distribution can be written 

0< 1<00, (68) 

so the probability (density) of making the first observation tl is 

(69) 

The probability of making all the observations (t I and t2 and ... and I,,) is, if the observations 
are independent, simply proportional to the product of the separate probability densities, and 
this is the likelihood of the specified value of T. Thus, 

(70) 

It is more convenient to work with the logarithm of this quantity (so we get sums rather 
than products), and this log-likelihood is denoted L(T). From equations 69 and 70, it is simply 

" n 
L(T) = ~ In/(ti) = n In(T- I ) - T- I ~ ti (71) 

i=1 i=1 

This log-likelihood must. of course, reach its maximum at the same value of T as does the 
likelihood (equation 70) itself. When L(T) is plotted against various possible values of T, it 
produces a curve like those shown in Fig. 19 (continuous lines). This curve summarizes all 
of the information that the data contain about T. The curve goes through a maximum and 
the value of T at the maximum is the value that makes the data most probable. It is the 
maximum-likelihood estimate (denoted t) of the unknown true value of T, i.e., of the true 
mean lifetime. 

The position of the maximum can easily be found analytically in this simple case by 
differentiating equation 71 with respect to T and equating the result to zero. This gives 
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n 

T = 2: t;ln = t (72) 
i=l 

Not surprisingly, the estimate is simply the arithmetic mean of the observations. 
With the help of equation 72, L(r) from equation 71 can be written in a form that shows 

that the decline of the graph on either side of the maximum depends only on the ratio, 
TIT, namely, 

L(T) = L(T) - n[ln(rlT) + (T/T)-l - 1] (73) 

Consider next the (usual) case in which resolution is limited. Suppose that it is impossible 
to measure reliably any intervals (Ii values) less than some specified amount, tmin (see Sections 
5.2, 6.8, and 6.11). Our observations are restricted to the range tmin to infinity. Therefore, 
rather than the simple exponential pdf in equation 68, we need the conditional pdf for t given 
that it is greater than tmin' To obtain this, we divide by the probability that an observation is 
greater than tmin (see Section 2 in Chapter 18, this volume), which, from equation 36, is 
simply exp( -tminh). This gives 

(74) 

The log-likelihood is therefore 

n n 

L(T) = 2: lnf(ti) = n In(T- 1) - T- 1 2: (ti - tmin) (75) 
i=1 i=1 

Differentiating and equating to zero gives the maximum-likelihood estimate of the mean 
lifetime as 

T = t - tmin (76) 

i.e., we subtract the lower limit tmin from the mean of the observations. This relationship 
was used by Neher and Steinbach (1978); it is generalized in Section 6.8. The same relationship 
can be obtained by noting that for an exponentially distributed variable with mean T, the 
mean of all observations longer than tmin is simply T + tmin (see the more general result 
following equation 85). 

Once estimates of the parameters of the pdf have been found, we can estimate the true 
number (N) of observations, which includes those that have been missed because they are 
less than tmin' This is is done simply by dividing the observed number, n, by the probability 
that an observation is greater than tmin' i.e., 

N=_n_ 
e-tmin/'T 

(77) 

This is generalized below, in equation 87. The expected frequency in a bin between I and 
t + Ilt is then simply 
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(78) 

This can be compared directly with the observed frequency (see Section 5.1). 
In these cases there was no need for iterative computer optimization because the maxi

mum-likelihood estimates could easily be calculated explicitly from equation 72 or 76. This 
cannot be done in general (see Section 6.8). 

Non-independent Observations 

The multiplication in equation 70 is correct only if the observations are independent. 
This is not always true. It is quite common, for example, for open times to be correlated; 
in the case of the muscle nicotinic receptor a long opening tends to be followed by another 
long opening. The question of correlations is discussed in more detail in Sections 5.7 and 
5.8 and particularly in Chapter 18 (this volume, Sections 10, 11, and 13). When such 
correlations are present, the estimates obtained by the methods described here will not be 
genuine maximum-likelihood estimates, and errors calculated for the estimates will, to some 
extent, be erroneous. The effect of correlations on the fitting process has never been investi
gated in detail. It seems unlikely that the effects will be serious, and the bias of the estimates 
is unlikely to be worse than that of genuine maximum-likelihood estimates. 

6.7. Errors of Estimates: The Simple Exponential Case 

Once an estimate (T) of the mean lifetime is obtained, it is natural to ask how accurate 
this estimate is likely to be. Estimates of error calculated from within a single experiment 
are notoriously unreliable and overoptimistic. The only reasonable estimate of error is found 
by repeating the whole experiment several times. Nevertheless, internal error estimates may 
be useful as a warning when an attempt is made to extract more information than the data 
contain, or in cases where repetition of the experiment is impossible. Two ways of estimating 
errors follow naturally from the maximum-likelihood approach. They are discussed next for 
the simple exponential case and generalized below. (It should be noted that these are not the 
only ways in which errors can be assessed; there is no general agreement about how this 
should be done in nonlinear problems.) 

6.7.1. Approximate Standard Deviations 

The first approach is to attach some sort of standard deviation to the estimate, T, that 
has been found. A standard approach is to calculate the observed information by differentiating 
-L(T) twice and then substituting T for T. From equation 71 or 75 we obtain 

_[;PL(T)] =!!. "'" _1_ ar T=f T2 Var(T) . 
(79) 

The quantity in equation 79 has a simple interpretation. The second derivative measures the 
curvature of the graph (e.g., Fig. 19) near the maximum. If it is small, the graph is flat; i.e., 
the likelihood is rather insensitive to the exact value of T; therefore, T is rather ill defined 
and has a large standard deviation. The reciprocal of expression 79 provides an estimate of 
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the variance of T, and its square root is an estimate of the standard deviation of f, denoted 
s(f). Thus, we obtain 

s(f) = flJn (80) 

It should be noted that the validity of this estimate of error depends entirely on the 
assumption that the observations really do come from a population described by a single 
exponential pdf, so that we are fitting the right thing. Insofar as this will never be exactly 
true, the estimate is optimistic (or even meaningless). 

The standard deviation for T found above, as for any standard deviation, can be interpreted 
in terms of a confidence interval only if we know the distribution of f (Le., what the 
distribution of f values would be if we had many such estimates). If we suppose that T has 
a Gaussian distribution, which, from the central limit theorem, will be approximately true 
when the number of observations is large, then an approximate 95% confidence interval for 
T might be calculated as T ± 2 standard deviations; i.e., 

T ± 2s(f). (81) 

The imperfection of this approach can easily be illustrated by an extreme example. Suppose 
we have only three observations, and their mean indicates that T = 2 ms. Then the standard 
deviation of the mean is estimated as 2! j3 = 1.15 ms. Now calculate a confidence interval 
for T by taking two standard deviations on either side of T, i.e., 2 ± 2.3 ms or -0.3 ms to 
+4.3 ms. According to this calculation, a value of'T = -0.3 ms for the true mean lifetime 
is compatible with the observations, although it is obvious that all negative values are actually 
quite impossible. One way of looking at the reason for this silly result is that intervals 
calculated in this way are necessarily symmetrical (the Gaussian distribution is symmetrical), 
but more realistic error limits, such as those described in the next section, will not generally 
be symmetrical. 

This example may be thought not to matter much because we never use such small 
numbers of observations. However, in some cases, we do wish to calculate the mean of quite 
small numbers. Consider, for example, the "intermediate shut times" (with 'T = 1.31 ms) in 
Fig. 15. Their mean length is of interest, but even in a long experiment, not many values 
can be observed, so absurdities like that just illustrated can easily occur in practice. They 
can be avoided by the method described in Section 6.7.2. 

Standard Deviations and Standard Errors 

Since the time intervals, ti' follow a simple exponential distribution in this case, the 
standard deviation of the individual observations should, on average, be equal to the mean 
lifetime (e.g., Colquhoun, 1971); i.e., s(ti ) = 1. The standard deviation of the mean of n 
lifetimes, often known as the standard error of the mean, is calculated as S(ti)! In, which, 
since f = f in this case, is just the result obtained in equation 80, but here it was obtained 
via the rather general method of equation 79. When quantities like that in equation 80 are 
obtained, it is often asked whether they are standard deviations or standard errors. This 
question is based on a common misunderstanding, because these are not two separate things. 
In fact, there is only one sort of measure of variability involved, and that is the standard 
deviation. This measure can be applied to any sort of variable quantity, as an index of how 
variable it is. It can be applied, for example, to a set of measured time intervals, Ii' and it 
will measure how much they vary for one interval to another. It can equally be applied to 
the mean of n lifetimes to measure how much repeated measurements of such means vary. 
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Or it can be applied to a time constant of a distribution (a T value, equation 30), as a measure 
of how much repeated measurements of that T value will vary. The standard error, a term 
that perhaps causes more misunderstanding than any other in elementary statistics, is not a 
separate sort of thing but is merely a piece of jargon standing for "the standard deviation of 
the mean of n observations" or, more generally, for "the (predicted) standard deviation of 
any quantity derived from the raw observations." The term standard error of the mean is 
still worse-it is not only misleading but also tautologous. The valid distinction is not between 
standard deviation and standard error but between (1) standard deviations that are estimated 
directly from a set of replicate observations (e.g., a set of measurements of individual 
lifetimes), the scatter of which can be directly observed, and (2) standard deviations that are 
calculated indirectly (e.g., standard deviation of the mean, or the standard deviation of aT 
value) when we have actually got only one value (for the mean or for T). In order to understand 
what the standard deviation means in the latter cases, we need to consider the standard 
deviation as a measure of how scattered the values would be if the quantity in question (the 
mean, or the T value) were repeatedly estimated under identical conditions. 

6.7.2. Likelihood Intervals 

The second approach to estimation of errors, the calculation of likelihood intervals, 
overcomes these problems. This is quite easy in the case of simple exponentials (but uses. 
quite a lot of computer time in more complex cases; see Section 6.9). The method is simply 
illustrated by the graph of the log-likelihood function, L(T), against T shown in Fig. 19. The 
maximum on the graph is at T = T, so it is L(T). If a horizontal line is drawn at a fixed 
distance, m loge units, below the maximum, it intersects the graph at two points, one below 
T and one above T. 

The values of T at these intersection points, Tlow and Thigh say, are, more formally, the 
(two) solutions of 

L(T) = L(T) - m (82) 

The values of Tlow and Thigh are clearly both less likely than T to the same extent (m loge
likelihood units), so it seems that they are good candidates to provide limits for the uncertainty 
in T. They are called m-unit likelihood intervals or support intervals (see Edwards, 1972). 

Conventional confidence intervals have an exact probability associated with them, but 
this is generally not possible in nonlinear problems of the sort that we have. Consider, 
however, a Gaussian variable with mean f.L. In this case, the curve L(f.L) has a simple quadratic 
form with constant curvature, from equation 79, and !1 is simply the arithmetic mean. In 
this case, the m-unit likelihood interval is just the conventional confidence interval defined 
as f.L plus or minus (2m)1I2 standard deviations, i.e., 

(83) 

Thus, there is a correspondence between m = 0.5 limits and one-standard-deviation limits; 
similarly, there is a correspondence between m = 2 limits and two-standard-deviation limits, 
and between m = 4.5 limits and three-standard-deviation limits. 

The likelihood curves for a simple exponential distribution from equation 71 are plotted 
as continuous lines in Fig. 19 for samples of size n = 3, n = 10, and n = 100. The dashed 
curves in Fig. 19 show the corresponding quadratic curves that are implicitly assumed in 
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the calculation of the approximate standard deviations. The values for error limits are tabulated 
in Table I (which is, like Fig. 19, normalized to unit value of T). Thus, to return to the 
example that follows equation 81 with T = 2 ms and n = 3, the two-unit likelihood interval, 
from Table I, is seen to be 2 X 0.379 to 2 X 4.16, i.e., 0.758 ms to 8.32 ms. These limits 
are unsymmetrical (from T - 1.242 ms to T + 6.32 ms), and are far more realistic limits 
than T - 2.3 ms to T + 2.3 ms, which were found from the "approximate standard devia
tion" approach. 

It is clear from Fig. 19 and Table I that in the simple exponential case, approximate 
limits from equation 81 are quite satisfactory for samples of 100 or more, for which T has 
a nearly Gaussian distribution. 

6.8. Maximum-Likelihood Estimates: The General Case 

The case of a single exponential distribution has been discussed in Sections 6.6 and 
6.7. The results given there generalize easily to any number of components. 

In general terms, we denote the values of the parameters to be estimated (010 O2, ••• ) 

by the symbol 0 and denote the jth observation as Yj' so the n data values are Yh Y2, .•. , 
Y ... The probability (density) of a particular observation, YI say, given some trial values of 
the parameters, 0, is denotedftyIIO). The probability of observing all of our particular data 
values is, for the specified 0, proportional to the product of all the individual probabilities 
(densities). This is, by definition, the likelihood of 0 for our particular data. As before, we 
prefer to work with the logarithm of this quantity, which is 

.. 
L(O) = ~ In!(YjIO) 

j=1 

(84) 

This can be calculated as soon as we specify the distribution explicitly. An optimizing 
computer routine can then find the values of the parameters that maximize L(O); these are 
the maximum-likelihood estimates, and they are collectively denoted 9. 

Table I. Likelihood Intervalsa and Standard Deviations 

Sample size (n) 

3 10 100 Approximate 
s(7) = llyn 0.577 0.316 0.100 probabilityi' 

m = 0.5 0.591, 1.89 0.741, 1.40 0.906, 1.11 
7 ± S(7) 0.423, 1.58 0.684,1.32 0.900,1.10 0.68 

m=2 0.379, 4.16 0.564,2.03 0.824,1.23 
7 ± 28(7) -0.155, 2.16 0.368, 1.63 0.800,1.20 0.95 

m = 4.5 0.260, 11.1 0.441,3.08 0.751, 1.37 
7 ± 3S(7) -0.732, 2.73 0.051, 1.95 0.700, 1.30 0.997 

"Comparison of m-unit likelihood intervals (from equation 82) and corresponding intervals calculated from approximate 
standard deviations (equation 81) for three sample sizes. The numbers in the table can be obtained from the graphs in Fig. 
19-19, or by solving the equations. The numbers given are the limits on either side of If' = 1.0; they should be multiplied 
by the observed value of If'. 
"This probability is based on the normal deviate by which the standard deviations are multiplied; use of Student's t statistic 
would give a better approximation. 
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This procedure can be made clearer if it is illustrated by the three most common sorts 
of distribution. 

6.8.1. Mixtures of Exponentials 

Distributions that have the form of a mixture of a number (k) of exponential densities 
are the most common; they have already been defined in Section 6.1. The parameters in this 
case are the time constants, 'TI> 'T2, ... , 'Tk, and the relative areas, al> a2, ... ,ak-I' Alternatively, 
we could estimate the 'Tj and the amplitudes Wi, or we could estimate the rate constants Ai 
and the areas, ai. It makes no difference which of these ways we choose, because, for example, 
Tj, = 1/~i' so we get the same result whether the distribution is written in terms of rate 
constants or of time constants. However, the areas (aj) are likely to be more nearly independent 
of the time constants than are the amplitudes (see also Section 6.10), so convergence may 
be easier if areas are estimated. 

The distribution can be written, if we choose the time constants and areas as parameters, 
as in equation 55. Notice again that there are not 2k parameters but 2k - 1, because the 
areas must add up to unity, as in equation 31. 

Limiting the Fitted Range 

In practice, limited frequency resolution means that nothing shorter than tmin can be 
measured; this limitation can be incorporated into the fitting procedure, as described in 
Section 6.6. Sometimes we may wish to exclude values below some tmin value that is greater 
than the resolution. We may also sometimes wish to exclude from the fit all values that are 
longer than some specified length tmax (e.g., to exclude a small number of exceptionally large 
values). Therefore, we need, in general, the conditional pdf, given that all the observations 
are between fmin and tmax. This is given by 

k 

~ aj'Tjle-t/Ti 

f(t) = _i=_1 ___ _ 

P(tmin < t < tmax) 
(85) 

which is a generalization of equation 74. The mean value of such censored observations is 

k 

~ aj [(tmin + 'Tj)e-tminITi - (tmax + 'Ti)e-tmax/Ti] 
E(t) = _i=_I _____________ _ 

P(tmin < t < tmax) 

The denominator in these results is simply the probability that an observation with the 
distribution in equation 55 lies between (min and tmax' namely, from equation 36, 

k 

P(tmin < ( < (max) = 2: aj(e-tmin/Ti - e-tmax/Ti) 

j=1 

(86) 

The observations consist of n measured time intervals tl> t2, ... , tn- Equation 85 can 
be evaluated for each of these in tum using some particular trial values (8) of the parameters. 
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The logarithms of these values are added to give, from equation 84, the value of L(O). The 
optimizing program then adjusts the parameter values so as to maximize L(O). The values 
of parameters that do this are the maximum-likelihood estimates ~h '2, ... , Clio Cl2, ..• An 
estimate of the true number of observations, N (including those shorter than tmin or longer 
than tmax), can then be obtained from the observed number, n, as in equation 77: 

N= n 
P(tmin < t < tmax) 

(87) 

where the denominator is as given by equation 86, with 'i, Qi substituted for 'rj, aj. A numerical 
example is considered in Section 6.10. 

6.8.2. Mixtures of Geometric Distributions 

In general, the distribution of the number of openings per burst, and similar quantities, 
is expected to be a mixture of one or more (k. say) geometric distributions of the sort defined 
already in equation 58 (see also Chapter 18, this volume). The distribution gives the probability 
of observing r (openings per burst, for example), and it can be written in a number of 
different ways. Alternative forms are given in equations 58, 59, and 63. In general, we may 
wish to include in the fitting process only those observed values that are between r min and 
rmax inclusive. Thus, as in the exponential case, we need the conditional distribution, which, 
from equation 58, is: 

k 

L ai(1 - Pi)pi l 

P(r) = _i_=_1 ____ _ 

P(r min :s; r :s; r max)' 
(88) 

From equation 64, the denominator is given by 

k 

P(rmin :s; r:S; rmax) = L ai(pfmin - I - pfmax) (89) 
i=1 

The data consist of a series of n observations of the variable 1; which we can denote 
r[, r2, ... , rD. These might be, for example, the number of openings observed in n different 
bursts. The probability of observing all of these values is given by the product of the P(r) 
values, so the log-likelihood is 

n 

L(O) = Lin P(rj) 
j=1 

(90) 

where P(rj) is calculated from equation 88 for particular values of the parameters (ai and 
Pi), which are collectively denoted O. The optimizing program adjusts the values of these 
parameters until L(O) is maximized, as usual. If there is only a single component, there is 
only one parameter, and if all observations are included (rmjo = 1, rmax = (0), then L(O) can 
be maximized analytically in this case. This gives the maximum-likelihood estimate of the 
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mean, jl, simply as r, the arithmetic mean of the observations, and hence, from equation 61, 
P = 1 - (1/jl) = 1 - (lIf). 

An estimate of the true number of observations, N (including those below r min or greater 
than r mal.)' can then be obtained from the observed number, n. thus: 

(91) 

where the denominator is given by equation 89, with Pi> t.li substituted for Pi' ai. 

6.8.3. Mixtures of Gaussian Distributions 

The principles are exactly the same as in the other cases. Suppose that the variable y 
(usually a single-channel amplitude measurement in the present context) has a Gaussian 
distribution with mean fl. and standard deviation a. Its probability density function is 

f( ) - 1 -u2/2 
Y - a(21f)1/2 e 

where 

is the "standard Gaussian deviate." 

u = (y - fl.) 
a 

A mixture of k Gaussians is, therefore, 

k 

fey) = 2: ai/iCy) 
i=1 

(92) 

(93) 

(94) 

where.fi(y) represents the Gaussian in equation 92 with mean fl.i and standard deviation ai' 
and ai are the relative areas of the components. 

The cumulative form of the Gaussian distribution, the probability that y is less than 
some specified value, Yl say, is the integral of fly), 

fYl P(y :5 Yl) = y=-oo f(y)dy (95) 

Unlike the other cumulative distributions given above, this one cannot be written in an 
explicit form. However, it is easy to calculate values for it in a computer program, since all 
mathematical function libraries contain routines to calculate values of the error function, 
erf(x) (see also Appendix 3). The cumulative Gaussian distribution is simply related to the 
error function, thus: 

(96) 

where Ul = (YI - fl.)/a. 
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We shall often want to fit constants over a restricted range of values, excluding values 
below Ymin and values greater than Ymax' Again, we need the distribution of Y conditional on 
Y being between Ymin and Ymax' This is given by dividingf(y), from equations 92 and 94, by 
P(Ymin < Y < Ymax), which, from equation 96, can be calculated as 

where 

k 

P(Ymin < Y < Ymax) = 0.5 L aj[erf(ul"ax/j2) - erf(ul"in/j2)] 
i=i 

max _ (Ymax - J.Li) 
Ui -

cri 
and 

min _ (Ymin - J.Li) 
Ui -

(1i 

The distribution of y, conditional on Y being between Ymin and Ymax. is therefore 

f( I < < ) - fey) 
Y Ymin Y Ymax - P( . < < ) Ymm Y Ymax 

where f(y) is given by equation 94 and the denominator is given by equation 97. 

(97) 

(98) 

(99) 

The data consist of a series of n observations of the variable Y (e.g .• channel amplitudes), 
which we can denote Yi. Yz, ...• Yn' The probability of observing all of these values is given 
by the product of the f(Yj) values, so the log-likelihood is 

n 

L(e) = L Inf(Yj) 
j=i 

(100) 

where f(Yj) is calculated from equation 99 for particular values of the parameters (ai, J.Li. 
and (1;), which are collectively denoted e. In the case of Gaussian fits, there are 3k - 1 
parameters to be estimated. In cases where components overlap too much for all of these 
parameters to be estimated successfully, it may be helpful to constrain the standard deviation 
to be the same for all k components. In this case, there will be 2k parameters to be estimated, 
namely, k values of the means (J.Li), k - 1 values for the areas (ai), and one value of cr. The 
optimizing program adjusts the values of these parameters until L(e) is maximized, as usual. 

An estimate of the true number of observations, N (including those below Ymin or greater 
than Ymax), can then be obtained from the observed number, n, as before, from 

N= n 
P(Ymin < Y < Ymax) 

(101) 

where the denominator is given by equation 97 with the maximum-likelihood values substi
tuted for the parameters. 

6.8.4. Binned Maximum-Likelihood Fits 

The full maximum-likelihood fitting method is quite fast enough for it to be feasible, 
on a fast PC, to fit up to, say, five exponential components to several thousand intervals. 
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With more components or more data (or a slow computer), the full fit may become inconve
niently slow. If a faster method is really necessary, the binned maximum likelihood method 
(Sigworth and Sine, 1987) should be used. In this method we use, to calculate the likelihood, 
not the probability (density) of observing a particular interval (given a set of parameter 
values) but, rather, the probability that our particular bin frequencies will be as observed. 
The values for the fitted parameters will, therefore, no longer be independent of how the 
bin boundaries are chosen. However, it has been shown, for logarithmically binned data (see 
Section 5.1.3), that the results are likely to be close to those from the full maximum-likelihood 
fit if at least 8-16 bins per decade are used (Sigworth and Sine, 1987). 

The quantity to be maximized, the "binned log-likelihood," can be written in the form 

(102) 

where the number of terms summed is now the number of bins, nbin (rather than the total 
number of intervals), nj is the number of observations in the jth bin, and tj is the lower 
boundary of the jth bin. The numerator of this expression uses the cumulative distribution, 
F(t), as given in equation 35 or 36 to calculate the probability, for the specified parameter 
values, 0, that an observation lies in the jth bin. The denominator, which was defined in 
equation 86, gives the probability that an observation is within the fitted range, tmin to tmax, 

the values of which must, in this case, correspond to bin boundaries. 

6.9. Errors of Estimation in the General Case 

The treatment in Section 6.7 can be generalized with the help of matrix notation, so 
that the two sorts of error calculation can be calculated for distributions with any number 
of parameters. An introduction to this notation is given in Chapter 20 (this volume). Further 
details can be found in Box and Coutie (1956), Beale (1960), Bliss and James (1966), 
Edwards (1972), and Colquhoun (1979). The following procedures are reasonable approaches 
to the specification of errors, but they are not unique. 

6.9.1. Approximate Standard Deviations 

Denote the parameters, v in number, as 0 = (0" Oz, ... , 0,,). The analogue of equation 
79 is the observed information matrix, 1(0), which is a v X v matrix with elements 

(103) 

This form is known as a Hessian matrix. The inverse of this matrix gives the covariance 
matrix, C(O), of the parameter estimates, so 

C(O) = 1(0)-1 (104) 

The elements of this matrix may be denoted cov(O;,O). The diagonal elements of C(O) give 
estimates of the variances of the parameter estimates, 0,. Thus, 
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(105) 

The square root of this gives the approximate standard deviation of the parameter estimate, 
OJ. The off-diagonal elements (i = J) give the covariances of these estimates. These measure 
the tendency of the estimate of OJ to be large if the estimate of OJ happens to be large (see 
Section 6.10 for examples). This tendency is more conveniently expressed as a correlation 
coefficient, rjj' between the two estimates; this can be calculated as 

_ COV(Oi,Oj) 
rij - [var(Oi)var(Oj)]/2 (106) 

It has been noted that if we fit the sum of k exponentials, only k - 1 areas (ah ... , 
ak- h say) are estimated. The area, at. for the kth component follows immediately from the 
fact that the total area for the pdf is unity: 

k-I 

ak = 1 - :2 ai' 

i=1 

A standard deviation can be attached to ak by the relationship 

k-I k-I k-I 

var(ak) = :2 var(ai) + 2 :2 :2 cov(aj,aj) 
i=1 i=1 j=1 

j<i 

(107) 

(108) 

The right-hand side of this equation is simply the sum of all the elements in those rows and 
columns of C(O) that refer to the k - 1 estimates of areas. If there are only two components, 
it reduces to Var(a2) = var(al). For three components it reduces to var(a3) = var(al) + 
var(a2) + 2cov(al,a2)' 

Explicit algebraic derivation of equation 103 or 104 would be a formidable task in all 
but the simplest cases, but, fortunately, it is not necessary. The second derivatives in equation 
103 can be estimated by standard numerical methods as long as we have a subroutine to 
calculate L(O) for specified values of the parameters. The Hessian so found can be inverted 
numerically by means of a matrix-inversion routine (see Chapter 20, this volume) to give 
the covariance matrix according to equation 104. 

6.9.2. Likelihood Intervals and Likelihood Regions 

Likelihood intervals can also be calculated in the general case, and this is probably one 
of the best ways of expressing errors for the parameters taken one at a time. In principle, it 
would be better to calculate a joint likelihood region for all k parameters, but such a k
dimensional region cannot be simply represented when k > 3. An example of ajoint likelihood 
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for the case where two parameters are estimated is shown in Fig. 20 (see also Colquhoun, 
1979). The graph shows a contour for L(6) = L(e) - 2, so any pair of parameter values, 6, 
and 62, that lie on this contour are 2 log-likelihood units less likely than the best estimates, 
6, and 62, The obliqueness of the contour shows that the estimates of 6, and 62 are positively 
correlated in this case; i.e., if both 61 and 62 were decreased, or both were increased, the fit 
would be little worse; i.e., L(6) would be reduced only slightly. This may be compared with 
the effect of increasing 6, and decreasing 62 (or vice versa); this would cause the fit to 
become much worse. '!he tan~ents to the contour are also shown in Fig. 20; they define (see 
text) 2-unit limits for 6, and 62 separately. When the parameter estimates are correlated, as 
in this example, these limits for the individual parameters are, in a sense, pessimistic: if, for 
example, the true value of 6, were actually near 6~ow, the correlation makes it improbable 
that the true value of 62 would be near 6~igh. In order properly to take into account the 
correlation between the parameter estimates, a joint likelihood region (the contour in Fig. 
20) is preferable. Points outside this region define pairs of 6" 62 values that are unlikely. 

The numerical calculations that are needed to calculate likelihood regions or intervals 
take a good deal longer than those for the approximate standard deviations but are perfectly 
feasible on fast personal computers. The principle is very simple. The m-unit likelihood 
limits (see Section 6.7 for explanation of this term) for a particular parameter, 6t. say, are 
defined as the values of 6, such that, if 61 is held constant at that value, and the likelihood 
L(6) is maximized again, allowing all the parameters except 6, to vary freely, then the 
maximum value of L(6) that can be attained is L(e) - m; i.e., it is m units less than the true 
maximum, L(6), which is attained when all of the parameters are allowed to vary. 

In order to calculate the lower or upper limit for 61> iterative procedures are used. An 
initial guess is made, and the minimization is performed with 6, fixed at this value; if the 
maximum attained is not L(e) - m, then the whole process is repeated by any standard 
iterative method (e.g., bisection or Newton-Raphson). This process is illustrated graphically 

thigh 91 
~ 

Figure 20. Schematic illustration of a joint likelihood region and of likelihood limits for the separate 
parameters in a case in which there are two parameters, el and e2, so e = (e l e2). The graph shows a contour 
map of L(e) with the peak of the hill, L(8). marked with a cross; this corresponds with the maximum
likelihood estimates, ill and il2, of the two parameters, as shown. The contour for L(il) - 2 is shown. Further 
explanation is given in the text. 
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for the case when there are two parameters in Fig. 20. A numerical example is illustrated 
in Fig. 21. 

If there are two components, the likelihood limits for a2 are simply unity minus the 
limits for a I. If there are more than two compOnents (cf. equations 107 and 108 above), then 
in order to find limits for ale it is necessary to refit the whole curve, so that ale becomes one 
of the parameters that is estimated rather than the one inferred from the fact that the total 
area is unity. 

6.10. Numerical Example of Fitting of Exponentials 

The simultaneous fit of a triple-exponential pdf can be illustrated by data on shut times 
that were obtained with a low concentration (100 oM) of suberyldicholine (R. temporaria, 
cutaneous pectoris endplate Em = -123 mY, lO°C). The results are similar to those shown 
in Fig. 15. The total number of openings fitted was 1021, but after imposition (see Section 
5.2) of a minimum resolvable time of 50 f.Ls (for both openings and gaps) and elimination 
of a few shut times that were unusable (because, for example, they contained ambiguous 
openings or simultaneous openings of more than one channel), the number of shut times to 
be fitted was 934. It was decided (see Section 5.2) to fit all durations between tmin = 50 f.Ls 
and tmax = 2000 s, a total of 931 shut times. 

The estimates of the time constants for the three components, found by maximizing 
L(O) from equation 84 withj{t) given by equation 85 were tl = 45.2 f.Ls t2 = 1.28 ms and 
t3 = 440 ms. The areas under the pdf accounted for by these components were, respectively, 
74.0% (i.e. al = 0.740), 2.3% (a2 = 0.023), and 23.7% (a3 = 0.237). The maximum value 
of L(O) attained was L(6) = -2899.33. The fitted curve resembles that shown in Fig. 15. 
This fit implies, from equations 86 and 87, that the true number of shut times is N = 1860.0, 
of which 931 are in the observed range (the data), 922.3 are shorter than 50 f.Ls, and 4.7 are 
above 2000 s. 

The component with intermediate rate (t2 = 1.28 ms) is quite small and, as expected, 
has the largest relative errors. Nevertheless, the error calculations below give no real reason 
to doubt its reality; and, far more important, the need for this component is visible to the 
eye when the data are displayed appropriately (e.g., as in Fig. 15B or D), and it is reproducible 
from experiment to experiment. 

In general, of course, it is quite improper to speak of short gaps, intermediate gaps, and 
long gaps on the basis of this fit; there is one pdf (which happens to be described by the 
sum of three exponentials), not three simple exponential pdfs. At least, it is improper unless 
we define the term "short gaps" in the manner suggested below, in which case the problem 
arises only when we wish to interpret the gaps so defined in terms of dwell times in particular 
states or sets of states. In some cases this convenient terminology can be justified, but only 
insofar as separate physical meanings can be attached, as an approximation, to the three 
components (see, for example, Colquhoun and Hawkes 1982; Chapter 18, this volume). 
Insofar as such an interpretation is valid, the data suggest that there are Nf = alN = 1376 
"short gaps," Nm = a2N = 42.8 "intermediate gaps," and Ns = a3N = 440.8 "long gaps." 
Of the "short gaps," only Nfe-S0I4S.2 = 455 would be above 50 f.Ls and therefore detectable. 

First consider the errors for these estimates found by the approximate standard deviation 
approach (see Section 6.9.1). The second derivatives in equation 103 were estimated numeri
cally; reasonable numerical accuracy is obtained by incrementing the parameters by ± 10% 
from the maximum-likelihood values given above or by incrementing each parameter by 
enough to decrease L(O) by 0.1. This provides an estimate of the observed information matrix. 
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Table II. Analysis of the Triple-Exponential Fit to Shut Time Durationa 

ML estimate Appr~x SD 
Likelihood intervals 

Parameter 6 sea) m= 0.5 m=2 2s(ii) 

42.9-47.7 40.6-50.5 
TI (""s) 45.2 2.4 (-2.3 to +2.5) (-4.6 to +5.3) 4.8 

72.2-75.5 70.5-77.1 
l00a1 (%) 74.0 l.6 ( - 1.8 to + 1.5) (-3.5 to +3.1) 3.1 

0.90-1.76 0.67-2.45 
T2 (ms) l.28 0.42 (-0.38 to +0.48) (-0.61 to +1.17) 0.84 

l.93-2.74 1.55-3.32 
1OOa2 (%) 2.29 0.43 (-0.36 to +0.45) (-0.74 to + l.03) 0.86 

418-466 396-494 
T3 (ms) 440.0 24.0 (-22 to +26) (-44 to +54) 48.0 

22.3-25.4 20.8-27.0 
l00a2 (5) 23.7 1.5 (-l.4 to +l.7) (-2.9 to +3.3) 3.0 

"The maximum likelihood estimate, 8, of each parameter is given, with its approximate standard deviation, s(8). Likelihood 
intervals are given in the form of intervals, and also, in parentheses, in the form of the deviation from 8. This deviation 
may be compared with s(8) for the m = 0.5 unit intervals, and with 2s(8) (which is listed in the last column) for the 
m = 2 unit intervals. 

This is then inverted numerically by means of any standard matrix-inversion subroutine to 
give the covariance matrix (equation 104) as follows (it is symmetric, so only the lower part 
is given): 

TI al T2 a2 T3 

[ 5.73 X 10-' 

r -2.20 X 10-5 2.44 X 10-4 al 
cov(8) "" 2.51 X 10-4 -1.97 X 10-4 0.18 T2 

9.07 X 10-8 -1.88 X 10-5 -8.40 X 10-5 1.81 X 10-5 a2 
1.50 X 10-3 -1.21 X 10-2 1.28 3.40 X 10-3 578.3 T3 

(109) 

The diagonal elements of this give the approximate variances of the parameter estimates 
(the order of the parameters is shown above, and to the right of, the matrix). The square 
roots of these variances are the standard deviations of the estimates and are shown in Table 
II. For example, for "2 the standard deviation is S(Tz) = (0.18)112 = 0.42. The standard 
deviation for the area of the slowest component (123) is obtained from equation 108 as Var(a3) 
= 2.44 X 10-4 + 1.88 X 10-5 + 2( -1.88 X 10-5) = 2.25 X 10-4, so the standard deviation 
for 123 is (2.25 X 10-4)112 = 1.5 X 10-2, or 1.5%, as shown in Table II. 

The correlation matrix is found from equation 109 by means of equation 106. It is 

TI al T2 a2 T3 

[- r -0.59 al 
0.25 -0.03 T2 

(110) 

0.009 -0.28 -0.05 a2 
0.03 -0.03 0.13 0.03 - T3 
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The correlation coefficient, for example, between the estimates of TI and al is '21 = 
- 2.20 X 10-5 1[5.73 X 10-6)(2.44 X 10-4)] 112 = -0.59. This modest correlation is the strongest 
found; it reflects the intuitively obvious fact that the fit would be almost as good if TI were 
decreased and al increased, or vice versa. In other words, a faster time constant for the fast 
component would not reduce the goodness of fit much if the area allocated to this component 
were simultaneously increased (this implies a considerable increase in the amplitude of the 
fast component, WI = aiIT I : see equation (57). This correlation is aggravated by the lack of 
observations below 50 JJ.S. There is also a small negative correlation (-0.28) between al 
and ~h and a small positive correlation (+0.25) between 1'1 and 1'2' Apart from these, the 
estimates are virtually independent. The fact that the slow component is well separated from, 
and nearly independent of, the other components means that a rough estimate of the standard 
deviation of its time constant can be calculated (compare equation 79) as 1'ljNs = 21 ms, 
which is not far from the value of 24 ms given by the full calculation (see Table II). For 
the small intermediate component, this approximation is, however, very poor; it gives s(1'2) 
= 0.19 ms, compared with 0.42 ms from the full calculation. 

The fact that only modest correlations are found for this fit is a good sign; it implies 
that the parameters are well-defined. If, for example, a strong positive correlation were found 
between two parameters, this would mean that if both were increased the quality of the fit 
would be little affected. In other words, the ratio of the two parameters is well defined, but 
their separate values are dubious. 

The likelihood intervals for m = 0.5 and m = 2.0 (see Sections 6.7 and 6.9) are given 
for each parameter in Table II. It can be seen that the former are not far from what is expected 
from the approximate standard deviations, even for the small intermediate component, in 
this example (which has quite a large number of observations). The difference between the 
two approaches is larger in the case of the two-unit intervals, especially for the small 
component; for example, T2 = 1.28 ms, and T2 ± 2S(T2} implies an interval about 1'2 of 1'2 
- 0.84 to 1'2 + 0.84 ms, whereas the two-unit likelihood interval gives 1'2 - 0.61 to T2 + 
1.17 ms. The estimation of the limits for T2 is illustrated in Fig. 21 (see also Sections 6.7 
and 6.9). 

6.11. Effects of Limited Time Resolution 

Virtually all experimental records contain intervals that are too short to be detected or 
measured, and this can cause serious distortion of distributions of open times, shut times, 
and number of openings per burst. The effect of missing brief events will be much less on 
distributions such as those of the burst length or the total open time per burst, so one way 
of dealing with the problem is to present only these distributions. 

The practical aspects of this problem have already been described in Section 5.2. 
The question of making corrections for missed events can be dealt with in two ways. 

The first, and most common, case occurs when no specific mechanism is being postulated 
for the channel under investigation. In this case it may be possible to make approximate 
corrections for missed events retrospectively. This can be done only in the case that either 
short openings or short gaps, but not both, are missed to any substantial extent. Such 
approximate corrections can also be done only when the kinetics of the observations are 
relatively simple. For example, if the distribution of (apparent) open times has more than 
one exponential component, then such corrections become difficult (though not necessarily 
impossible). Methods for making this sort of approximate correction are discussed, for 



Practical Analysis of Records 

Figure 21. Estimation of likelihood 
intervals for 72 in the numerical example 
given in Section 6.10 (see Table II). The 
procedure is a generalization (to more 
than two parameters) of that illustrated 
in Fig. 20. The graph shows LmID< plotted 
against 72, where Lmax was found by hold
ing 72 constant at the value shown on 
the abscissa and maximizing L(8) with 
respect to the other four parameters (T I> 

GJ, G2, and T3)' The peak of the curve is, 
therefore, the overall maximum L(e) = 
-2899.33 and corresponds to -1-2 = 1.28 
ms. The values of 72 corresponding to 
Lmax = L(e) - 2 = -2901.33 are the 2-
unit limits: 0.67 and 2.45 ms. The 0.5-
unit limits can similarly be read off at 
L(e) - 0.5 = -2899.83. In practice, it 
would be uneconomical to calculate this 
whole graph; the required points are 
found numerically by iteration (see text). 
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example, by Colquhoun and Sakmann (1985), and in Section 12 of Chapter 18 (this volume), 
and they are justified in more detail by Hawkes et al. (1992). 

Exact corrections for missed events are possible only when a specific mechanism for 
channel operation is postulated. The methods that are available for doing exact corrections 
are discussed in Sections 12 and 13.7 of Chapter 18 (this volume). A particular benefit of 
these methods is that they have made it possible to fit reaction mechanisms directly to 
idealized data, as discussed next. 

6.12. Direct Fitting of Mechanisms 

The discussion so far has concerned the empirical fitting of exponentials (or geometrics) 
without specifying any particular reaction mechanism; the parameters to be fitted are the 
time constants and areas of the exponential components. Most investigations of reaction 
mechanisms have used such fits as the basis for a post hoc attempt to infer a mechanism. 
This procedure is less than ideal. One problem with it is that the information obtained from 
one sort of distribution may overlap strongly with that from another sort. For example, the 
distributions of burst length and of total open time per burst will be similar if the gaps within 
bursts are short (or rare). No method is known for combining the information from different 
sorts of fit in an optimal way to obtain the best idea about how well a specified mechanism 
fits the observations. Likewise, this approach makes it hard to compare two different putative 
mechanisms. Another problem with the post hoc approach is that, since each sort of distribu
tion is fitted separately, the constraints on the relationship between them, which are implicit 
in the mechanism, are not taken into account. 

Clearly, as mentioned in Section 6.1, it would be preferable to fit, as the adjustable 
parameters, not the time constants of the exponentials but the underlying rate constants in 
a specified mechanism (e.g., the values of Lb U2, etc. in the mechanism specified in equation 
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110 of Chapter 18). Furthermore, since one set of values for these rate constants should be 
able to predict all the results from any sort of experiment, it is obviously preferable to do 
one simultaneous fit of all the observations that have been made. For example, it is desirable 
to fit, simultaneously, observations on steady-state records at several different agonist concen
trations or membrane potentials, observations on channel openings following jumps under 
various conditions, and any other data that may have been obtained. Furthermore, it is 
undesirable to fit open times and shut times separately, because this procedure cannot take 
advantage of the information available from the sequence in which they occur (i.e., information 
from correlations-see Sections 5.7 and 5.8 above and Sections 10-13 of Chapter 18, 
this volume). 

The sort of optimum approach to direct fitting just described was already well understood 
at the time of the first edition of this book (see Section 6.1.2 of Chapter 11 of the first 
edition), and attempts to implement direct fits had already been made (Hom and Lange, 
1983). The problems were that the observations in the idealized record that are to be fitted 
suffer from omission of brief events and that retrospective corrections for missed events are 
not useful if a direct fit is to be attempted. Nothing very effective could be done until methods 
were devised to predict the distributions of what is actually observed rather than what would 
have been observed if time resolution had been perfect. Such methods now exist and are 
summarized in Sections 12 and 13.7 of Chapter 18 (this volume). They are now coming into 
use (e.g., Sine et al., 1990). The approach is to calculate one value of the total likelihood 
from all the sets of data that are being fitted and to find the parameters that maximize this 
likelihood. The likelihood is calculated from the sequence of open and shut times rather than 
separately from each, so information from correlations is included in the fitting process. An 
example is given in Section 12.5 of Chapter 18 (this volume), and the general theory is 
summarized in Section 13.7 of Chapter 18 (this volume). 

6.13. Fitting the Results after a Jump 

The first problem is to get the results. Apart from the problem of estimating the number 
of channels, it is also the case that only one first latency can be measured for each jump, 
and it may be hard to get enough values in one experiment to make a decent-looking 
distribution. There will also be only one value per jump of each subsequent open and shut 
time if the first, second, etc. values differ (and this will not be known until their distributions 
have been looked at separately). It is perhaps for this reason that first latencies have often 
been displayed as cumulative distributions; the spurious appearance of precision that charac
terizes this sort of display (see Section 5.1.4) makes them look better than they are; this is 
highly undesirable. 

Channel openings can be fitted by one of the methods already described, and a defined 
resolution can be imposed as described in Section 5.2 (this is especially desirable if the 
results are to be fitted with allowance for missed events). First latencies would then be 
corrected for recording delays (see preceding section). If the shut-time components are 
sufficiently well separated, it may be possible to define bursts of openings in the record. 
The theoretical distributions describing openings, shuttings, and bursts after ajump are given 
by Colquhoun and Hawkes (1987) in the case of a single channel and no missed events (see 
also Chapter 18, this volume). It is also possible to fit a mechanism directly, with allowance 
for missed events, as described for stationary records in Chapter 18 (this volume) and Section 
6.11 (A. G. Hawkes, A. Jalali and D. Colquhoun, unpublished data). 

When empirical mixtures of exponentials are being fitted to the first-latency distribution, 
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it should be remembered that the areas of some components may be negative, as explained 
and illustrated in Chapter 18 (this volume Section 11). It is therefore important to be sure 
that your fitting program does not constrain all the areas to be positive (see Section 6.1.3). 

6.13.1. Latencies with N Channels 

If more than one channel is present, the first latencies will, of course, appear to be 
shorter than they really are. In the case of the first-latency distribution (but not any of the 
others), it is relatively simple to correct the observations if the number of channels is known. 
When N independent channels are present, the observed first latency will be greater than t 
if the first latencies for all N individual channels are greater than t. Thus, from equation 36, 

P(allNlatencies > t) = 1 - FN(t) = [1 - Fl(t)]N 

where F1(t) is the probability, for one channel, that the latency is equal to or less than t (see 
Section 5.1.4), and the observed cumulative distribution provides an estimate of F tl...t) (Aldrich 
et al., 1983). The pdf of the first latency is the first derivative of F1(t), so if we denote the 
pdf for N channels asftl...t) we get (Colquhoun and Hawkes, 1987) 

6.13.2. Effect of Finite Sample Length 

The rectangular pulse of voltage, or ligand concentration, will be of fixed finite length, 
and the length of the data record collected after the end of the pulse will usually also be of 
fixed length. There will, therefore, always be an incomplete interval at the end of each 
record; if the channel was shut at the end of the record, the length of the shutting is not 
known because the next opening has not been recorded, and conversely, if the channel is 
open at the end of the record, the length of this last opening is not known. But we do know, 
in either case, that the interval was at least as long as the bit of it that was observed. It is 
easy to take into account this information when doing maximum-likelihood fitting (with or 
without allowance for missed events). For all complete intervals oflength ti' the log-likelihood 
is found as L = Iln.f{tj) (see equation 84); the probability of observing an interval of length 
at least t is 1 - F(t), so a separate term, Iln[1 - F(@, can be added to the log-likelihood 
for the incomplete intervals (of length t j ). We then maximize the sum of these two terms, 
which is the overall log-likelihood (Hoshi and Aldrich, 1988). 

Appendix 1. Choice of the Threshold for Event Detection 

The choice of the threshold setting that allows the detection of the briefest events was 
considered in Section 3.3. However, optimizing the detection of the shortest pulses is not 
necessarily the best strategy for detection of single-channel events, because one is interested 
in counting events of all widths. The ideal event detector would have a sharp transition at 
some width, Wmin, such that events narrower than this would be missed but essentially all 
longer events would be counted. In practice, the transition, as seen in a graph of the probability 
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of detection as a function of w. is not necessarily sharpest when ~ and!c are chosen as 
described in Section 3.3. 

Figure A 1 demonstrates this property for pulses in the presence of I + f noise. The 
probability of detection Pdet depends not only on w but also on ~,!c, the channel amplitude, 
and the spectral characteristics. Part A of Fig. Al corresponds to the case of a low channel 
amplitude (specifically, Ao = 0.22 pA when the standard noise spectrum is assumed) in 
which events of width Wmin = 3 ms or longer could be resolved. To construct each curve in 
the figure, a value of ~ was first selected, and!c was then chosen to give ~/(Jn = 5. On the 
basis of these parameters,Pdet(w) was then estimated. The value of ~ giving the best detection 
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Figure AI. Perfonnance of the event detector at various settings of the threshold 11>. A and B: The probability 
of detection of isolated pulses of unit amplitude as a function of pulse width w. The parameters in A 
correspond to very small currents (Ao = 0.22 pA in So = 10-30 A2/Hz noise), giving Wmin ... 3 ms. At each 
value of 11>. Ie was adjusted to give an = 11>/5 to keep the false-event rate approximately constant. In B, the 
parameters correspond to relatively large currents (Ao = 7.1 pA in the same noise); much shorter events 
(Wmin ... 13 J.l.s) can be detected. In this case, Ie was adjusted to keep I1>lan = 3, corresponding to a higher 
false-event rate. C and D show the overall fraction, Ptot.b of pulses detected, given exponential distributions 
of pulse widths (equation AI). Each curve represents a different effective event amplitude, with the lowest
numbered curves corresponding to the largest amplitudes. Values for the amplitudes, time constants of the 
distribution, and other parameters are given in Table AI. In C, I1>lan was fixed at 5, whereas in D, I1>lan = 
3. The larger an values in D cause the curves to be broadened and the optimum 11> values to be slightly 
lower. Curves 4 and 6 were computed for the same conditions as in parts A and B, respectively. 
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of the shortest pulses was about 0.8 times Ao; when cI> was reduced to 0.7 Ao, the transition 
moved to a slightly higher value of w but was steeper. On the other hand, increasing to 0.9 
Ao broadened the transition, so that whereas the very briefest pulses could be detected with 
higher probability, pulses even twice as long as Wrnin would be detected with only 80% 
probability. This sort of broadening of the transition region is very undesirable because it biases 
the selection of events in a way that can cause distortion of experimental lifetime distributions. 

The broadening of the transition region is most severe when cI> approaches Ao. This can 
be understood intuitively from the fact that if cI> is near the full event amplitude, even 
moderately long events may fail to exceed cI> when noise fluctuations are present. When cI> 
is set lower (with!c concurrently set lower), the longer events will have relatively larger 
peak amplitudes and will have a better chance of exceeding the threshold. 

Figure AlB shows Pdet(w) curves for pulses of relatively large amplitude (Ao = 7.1 pA 
in the standard noise spectrum; cl>/CTn = 3). The minimum pulse width is about 13 JLS in this 
case, and the optimum cI> for detection of short pulses is much smaller, approximately 0.36 
Ao. As the figure shows, the position and shape of the POOt curve depend only weakly on cI> 
in the range 0.2 to 0.5 times Ao. 

Parts C and D of Fig. Al give a summary of the performance of an event detector in 
situations with various ratios of channel amplitude to background noise level. The quantity 
that is plotted here is the total fraction of events detected, Ptotab out of an ensemble of pulse
shaped events having a probability density functionf(w) of widths, 

Ptolal = LX> POOt(W)!(w)dw (AI) 

where Aw) was chosen to be exponential, f(w) = (lIT) exp( -WIT). For each curve, Twas 
fixed at the value 2wrnin; the actual values used are given in Table AI. The maximum values 

Table AI. Parameters for the Curves in Fig. AIC,oa 

cjJ = 0.5 Ao cjJ = 0.7 Ao 

Ao Wmin Ic Ic 
Curve <!>Ian A~/Sofo (pA) (msec) (kHz) P!otal (kHz) p!otaJ 

1 5 5000 7.1 0.023 7.62 1.00 10.94 0.96 
2 5 500 2.2 0.089 2.00 1.00 3.02 0.99 
3 5 50 0.71 0.43 0.375 0.95 0.641 1.00 
4 5 5 0.22 3.84 0.046 0.87 0.086 0.98 
5 5 0.5 0.07 38.4 0.0047 0.85 0.0092 0.98 
6 3 5000 7.1 0.013 13.16 0.99 18.7 0.94 
7 3 500 2.2 0.048 3.71 1.00 5.45 0.97 
8 3 50 0.71 0.206 0.834 0.98 1.34 0.99 
9 3 5 0.22 1.21 0.121 0.91 0.222 1.00 

10 3 0.5 0.07 10.4 0.0129 0.88 0.025 1.00 
11 3 0.05 0.02 104.0 0.0013 0.88 0.0025 1.00 

·Part C was computed with ""0"0 = 5 (low false-event rate; curves 1-5), and D with 1\>/0"0 = 3 (curves 6-11). Each curve 
represents a different value of the signal-to-noise parameter AMsofo, which corresponds to the given Ao value in the standard 
case (So = 10-30 A2/Hz,Jo = I kHz, I + !spectrum). The Wmio values give the effective minimum detectable pulse width. 
The distribution of pulse widths for calculating P_I was chosen to be exponential in each case, with the time constants T 

= 2Wmio' For I\> = 0.5 and 0.7, tbe corresponding!. values and the relative detection efficiency P;"w = ptotal(I\»lptota\{max) 
are given. The maximum value PlOIw{max) was always within a few percent of exp{ -WmiJ'I') = exp( -112), the probability 
expected if only those events shorter than Wmio were not detected. 
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of PIOta! computed in this way were near 0.6, which is to be expected since, if Pdet(W) were 
zero for W < Wmin and unity for all larger w, PIOIa! would equal exp( -WminlT) = 0.61. 

A comparison of the Ao and Wmin columns of Table AI shows the approximate limits 
of pulse detection, and the Ie columns show typical corresponding filter bandwidths. The 
choice of the <I>/O'n ratio equal to 3 instead of 5 allows pulses shorter by a factor of 2-3 to 
be detected, but at the cost of higher false-event rates. For large pulses (Ao > 1 pA in this 
case), Wmin decreases as lIAo, whereas for smaller pulses, Wmin varies as lIAo2. The Ao values 
given correspond to the standard noise spectrum; for other 1 + I spectra, the dimensionless 
parameter A02/(Sofo) is the appropriate measure for the signal-to-noise relationship, and Wmin 

values should be scaled as lifo for 10 differing from 1 kHz. 
Although this analysis has been quite complicated, the practical conclusions can be 

stated simply. First, for detecting channels of relatively low amplitude, implying that!c must 
be set to be below 10 (1 kHz in this example) to obtain a suitable background noise level, a 
good choice for <I> is about 0.7Ao. This is near the peaks of the corresponding PIOlal curves 
but is low enough to insure a sharp transition in the Pdel(W) curves. Second, for detecting 
larger channel events, for which/c can be larger than 10, the exact choice of <I> is less critical, 
with the range 0.4 to O.5Ao generally being best. The special case <I> = 0.5 Ao is of interest 
for event characterization. It can be seen from Fig. Ale and D that Plota! is always at least 
85% of its peak value when <I> = 0.5 Ao is chosen. 

Appendix 2. The Expected Distribution of Fitted Amplitudes 

We derive here the distribution of channel amplitudes that would be expected when 
amplitudes are estimated by averaging. Points are averaged over an interval Wa that lies 
within the "flat-top" portion of an event. This estimate, A, has an expected value (long-term 
average) equal to the true channel amplitude, Ao. 

We assume that the background noise spectrum is flat and that the noise does not change 
appreciably when a channel opens. In this case, A has a variance that depends on Wa 

according to 

(A2) 

where So is the (one-sided) spectral density. Strict equality holds in the limit when Wa is very 
large compared with the recording system risetime Tn but the approximation is actually very 
good for all Wa 2:: Tr • It is also a good approximation to the error in least-square fitting of 
the time course (Fig. lIB). 

In practice, the background noise spectrum rises with frequency, but it is usually flat 
below 1 kHz. Since the frequencies that predominantly contribute to 0';" are below I = 
1/2wa, for Wa on the order of 1 ms or larger the flat-spectrum assumption is usually justified, 
with So being taken as the low-frequency spectral density. 

Assuming that the baseline level is known exactly, 0';" is the entire variance of the 
channel amplitude estimate. If we assume that the background noise is Gaussian distributed, 
the probability density of values of A for a given Wa is also Gaussian: 

(A3) 
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In practice, one does not want to hold the averaging interval constant but instead allows it 
to vary with the channel-open time, to. We assume the relationship 

(A4) 

where tm is the (fixed) length of an event that is "masked off" before averaging; this would 
typically be chosen to be between 1 and 2 risetimes in length to avoid any bias toward lower 
estimates as a result of the rising and falling edges of the pulse. Finally, we wish to ignore 
amplitude estimates from the briefest events by setting a lower limit Wmin for averaging 
widths. The resulting pdf for the amplitude from an ensemble of events having random 
widths is then given by 

g(A) = r gw(A;wJf(wa)dwa 
Wmin 

(A5) 

where ft..wJ is the pdf of averaging widths. If to is distributed according to a mixture of 
exponential densities, as in equation 30, thenft..wJ is also mUltiexponential, 

(A6) 

Substituting equations A6 and A3 into the integral A5 yields 

(A) - 1 lao 112 [Wa(A - Ao)2] [~ -w for°ld g - (211'S )112 0 Wa exp 2S ~alrie a, Wa 
o WmlD 0 

(A7) 

It is helpful to change the variable of integration to Xi = (WalTi)112 and to introduce the defini
tions 

XOi = (wmin/Tj)ll2 

CTOi = (SO/T)112 (AS) 

where XOi is dimensionless and gives a measure of the spread of the distribution of Wa values, 
and CTOi is the standard deviation of an amplitude estimate when Wa = Tj. Finally, we set 
8j = (A - Ao)/2112 CTOi so that 8; are the normalized deviations of A from its expected value. 
The integral can then be evaluated to yield 

where erfc is the complementary error function. (A formula for numerically evaluating this 
function is given in Appendix 3). 
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Figure A2 shows plots of this distribution for various values of Xo in the case where 
the open time has a simple exponential distribution with mean T. Since 0"0 is kept constant, 
the figure demonstrates the effect of changing the duration limit Wmin on the shape of the 
amplitude distribution obtained from a given set of single-channel events. When Xo is larger 
than unity, the first term of equation A9 predominates, so that the distribution is essentially 
Gaussian in shape and has a standard deviation O"a .... O"oIxo = (So/wmin)I12. Largexocorresponds 
to the case in which Wmin is large compared to T, so that the distribution of W values dies 
off quickly beyond Wmin' A nearly Gaussian amplitude distribution is therefore to be expected 
from the tightly clustered Wa values. 

As Xo decreases, the tails of the distribution become wider, and the distribution becomes 
distinctly non-Gaussian, but it remains symmetrical. To obtain the sharpest distribution, it 
is best to choose Wmin (and therefore xo) to be large. However, a high Wmin value implies that 
fewer events will be counted in the amplitude histogram. A good compromise is to choose 
Wmin = T/2, yielding x3 = 0.5. This allows the fraction exp( -112) """ 0.6 of the maximum 
number of events to be counted while yielding a distribution that is nearly indistinguishable 
from a Gaussian having the standard deviation 0" = 1.240"0 (Fig. A2B). 

Rather than computing the background noise power spectrum to determine So, it may 
be more convenient in practice to estimate aa directly. This can be done by forming the 
averages of a large number of successive stretches, of length T, of the background trace. The 
variance of these values can then be used directly as an estimate of aa. 

Appendix 3. Numerical Techniques for Single-Channel Analysis 

A3.t. A Digital Gaussian Filter 

This digital filter forms output values Yi from input values Xi by forming a weighted sum 

" 
Yi = ~ ajxj_j (A 10) 

j=-" 

where the aj are coefficients that sum to unity. 

~~~/_-~~~,~-~~-~ 
-5 o 5 -4 -2 0 2 4 

Deviation in measured event amplitude( units of 00) 

Figure A2. A: Plots of the function in equation A9 for various values of the parameter xa, in the case where 
the open time has a simple exponential distribution. The plots were scaled to superimpose the peak values. 
B: Comparison of equation A9 with a Gaussian function. The parameter Xo was chosen to be 1I.ji; the 
Gaussian function (dotted curve) was fitted by eye and had a standard deviation equal to 1.240"0' 
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A continuous-time Gaussian filter is characterized by the width parameter or "standard 
deviation" 0" g of its impulse response, which is related to the cutoff frequency!c according 
to (see equation 2) 

O"g = 0.1325ifc (All) 

Similarly, for a discrete filter, 0" g can be defined in units of sample intervals, in which case 
equation All holds if!c is expressed in units of the sampling rate. 

For a discrete Gaussian filter having width 0" g' the coefficients have the form 

I (-P) 
aj = .ji7r0" g exp 2~ (AI2) 

and the number of terms, n, is chosen so that the missing terms are negligible in size; in the 
implementation described here, n is chosen to be 40" g' 

If O"g is relatively small, coefficients of the form of equation AI2 sum to less than unity 
and yield a filter with wider bandwidth thanfc; these errors exceed 1% when O"g is less than 
about 0.6. Since small 0" g corresponds to relatively light filtering, a suitable choice for the 
coefficients in this case is 

(AI3) 

so that each output value of the filter depends only on the corresponding input value and its 
two neighboring points. This simple filter function causes no problems with aliasing, provided 
the original data points are sampled at a sufficient rate, e.g., five times the cutoff frequency 
of Bessel-response prefiltering. 

Filter procedures are presented in Fig. A3 for FORTRAN and in Fig. A4 for MODULA-
2. The FORTRAN implementation operates on an array of integer input values and produces 
integer output; intermediate computations are however, performed in floating point. Note 
that because the number of coefficients n (this value is called NC in the FORTRAN subroutine, 
NumCoeffs in the MODULA-2 version) increases inversely as fc, sufficient room in the 
coefficient array A should be provided for the smallest expected!c value. For example, n = 
53 for Ie = 0.01, but n =5 for!c = 0.1. The MODULA-2 implementation consists of two 
procedures, one to compute the coefficients and the other to perform the actual filtering. The 
latter, DoFilter, operates on real (floating-point) values and is capable of decimating the data, 
i.e., producing fewer output points than input points. 

As an example of the use of these subroutines, suppose that we have a digitized record 
that was filtered with a Bessel filter at 2 kHz and sampled at a 10-kHz rate. To reduce the 
effective bandwidth to I kHz, the second filtering operation should have a cutoff frequency 
(see equation 4), of (I - 114)-112 = 1.15 kHz. In calling the filter routine, the FC or Frequency 
variable should therefore be set to 0.115. 

In both of the implementations shown, the evaluation of the sum (equation AlO) is 
done only after checking that the input array bounds will not be exceeded; the result is that 
the values of the input points before the beginning and after the end of the input array are 
in effect assumed to be zero. Although the points in the middle of a long data array will not 
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SUBROUTINE FILTER (IN, OUT, NP, FC) 
C 
C Gaussian filter subroutine. Accepts integer 
C data from the array IN, filters it with a -3db 
C frequency FC (in units of sampling frequency) 
C and returns the integer results in the OUT array. 
C 

INTEGER IN(NP), OUT (NP) 
REAL A(54) 

C (Coefficient array. 54 terms are sufficient 
C for FC >= .01 
C 
C -----First, calculate the coefficients----

SIGMA = 0.132505 I FC 
IF (SIGMA. LT. 0.62) GOTO 10 

C 
C Standard gaussian coefficients. 
C NC is the number of coefficients not counting 
C the central one A(O) . 

C 

NC = INT( 4.0 * SIGMA ) 
IF (NC .GT. 53) NC = 53 
B = -0.5 I ( SIGMA * SIGMA 
A(l) = 1.0 
SUM = 0.5 

DO 5, I = 1, NC 
TEMP = EXP( (1*1) * B ) 
A(I+l) = TEMP 
SUM = SUM + TEMP 

5 CONTINUE 
C Normalize the coefficients 

C 

SUM = SUM * 2.0 
DO 7, I = 1, NC + 1 
A(I) = A(I) I SUM 

7 CONTINUE 
GOTO 20 

C Alternate routine for narrow impulse 
response. Only three terms are used. 

10 A(2) = SIGMA * SIGMA I 2.0 
A(l) = 1.0 - 2.0 * A(2) 
NC = 1 

C 
C -----Actual filtering is done here-----
20 DO 40, I = 1, NP 

JL = I - NC 
IF (JL .LT. 1) JL = 1 
JU=I+NC 
IF (JU .GT. NP) JU = NP 

C 
SUM = 0.0 

DO 30, J = JL, JU 
K = lABS (J-I) + 1 
SUM = SUM + IN(J) * A(K) 

30 CONTINUE 
C 

OUT(I) = SUM 
40 CONTINUE 

RETURN 
END 

FigureA3 
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IMPLEMENTATION MODULE FilterReali 

FROM SYSTEM IMPORT ETOXi (* exp function *1 
FROM InOut IMPORT writeString, WriteInt, WriteLn; 

CONST 
MaxFilterCoeffs = 220; 

(* Module global variables *1 
VAR 

NumCoeffs INTEGER; 
Coeffs : ARRAY(O .. MaxFilterCoeffs] OF REAL; 

PROCEDURE SetGaussFilter ( Frequency: REAL I; 
(* Load the filter coefficient values according to the cutoff 

frequency (in units of the sample frequency) given. 
*) 

VAR 
sigma, b, sum 
i 

REAL; 
INTEGER; 

BEGIN 
sigma:=0.132505/Frequency; 
IF sigma < 0.62 THEN (* light filtering *) 

Coeffs[!] := sigma*sigma*0.5: 
Coeffs[O] := 1.0 - sigma*sigma: 
NumCoeffs: =1; 

ELSE (* normal filtering *) 

NumCoeffs:= TRUNC(4.0 * sigma); 
IF NumCoeffs > MaxFilterCoeffs THEN 
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WriteString ("FilterReal.SetGaussFilter: Too many coefficients:·); 
Writelnt( NumCoeffs, 4 ); WriteLn; 
NumCoeffs:= MaxFilterCoeffs; 

END; 
b:= -1.0/(2.0*sigma*sigmal; 

(* First make the sum for normalization *) 
sum:= 0.5; 
FOR i:=1 TO NumCoeffs DO 

sum:= sum + ETOX( b * FLOAT(i*il ); 
END; 
sum:= sum * 2.0; 

(* now compute the actual coefficients *1 
Coeffs[O]:= 1.0 / sum; 
FOR t:=! TO NumCoeffs DO 

Coeffs[i]:= ETOX( FLOAT(i*i) * b I I sum; 
END; 

END; 
END SetGaussFilter· 

FigureA4 

be affected by this, the first and last n output values are reduced in magnitude by this 
truncation of the sum. This becomes an important issue when one wishes to filter a long 
digitized recording that does not fit into a single array of length N. The way to avoid the 
"edge effects" is to read overlapping segments of data into the input array and then to write 
out only the central N - 2n points of the output array each time (with the exception of the 
first and last segments, where the initial and final "edges" should be written to preserve the 
total number of points). 
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PROCEDURE DoFilter( VAR Input. Output : ARRAY OF REAL; 
NumInputPoints : INTEGER; 
Compression : INTEGER); 

1* From the Input array. create a filtered Output that is 
decimated by Compression. Thus the number of output points 
is equal to NumlnputPoints DIV Compression. SetGaussFilter 
must be called before this procedure to set up the filter coefficients. 

*) 

VAR 
iO. i. j 
jmax. jmin 
sum 

BEGIN 

INTEGER; 
INTEGER; 
REAL; 

FOR iO := 0 TO INumInputPoints DIV Compression) - 1 DO 
i := iO .. Compression; 

(* Make sure we stay within bounds of the Input array *) 
jmax := NumCoeffs; 
jmin := NumCoeffs; 
IF jmin > i THEN jmin := i END; 
IF jmax >= NumlnputPoints - i THEN jmax := NumInputPoints - i-I END; 

sum := Coeffs[O] * Input[i]; (* Central point *) 

FOR j := 1 TO jmin DO 
sum : = sum + Coeffs[j} * Input[i-j}; 

END; 

FOR j := 1 TO jmax DO 
sum := sum + Coeffs[j] .. Input[i+j]; 

END; 

(O' Assign the output value *1 
Output[iO] := sum; 

END; (O' FOR iO *) 
END DoFilter; 

END FilterReal. 

(O' Early points 

(. Late points 

Figure A4. Continued. 

AJ.2. Cubic Spline Interpolation 

O') 

* ) 

A very useful interpolation technique for single-channel recording is the cubic spline, 
in which a cubic polynomial spans the interval between each pair of data points. A different 
polynomial is used for each interval, with coefficients chosen to match the function values 
as well as the first and second derivatives at the sample points. An introduction to the theory 
can be found in Hamming (1975). Briefly, we wish to find an interpolating function/whose 
valuesftl),ft2) ... match the data values y" Y2, ... obtained at equally spaced sample times. 
Intermediate values ftk + 0) for 0 between 0 and 1 are given by 

(A14) 

where p = 1 - O. Before the interpolation is done, the coefficients ak must be computed. 
They are specified by the system of equations 

(A15) 

which can be solved by Gaussian elimination. 
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SUBROUTINE SPLINE (IN, OUT, A, N, NOUT) 
C 
C This subroutine accepts N integer values from array 
C IN, interpolates them by the factor NE = NOUT/N 
C and returns the NOUT-NE+l output points in the 
C array OUT. The array A is used internally for 
C coefficients of the cubic term of the interpolating 
C polynomial. 
C 

C 

C 
C 
C 

C 

C 

INTEGER IN(N), OUT (NOUT) 
REAL A(N) 

B = -1.0 I '(2.0 + SQRT( 3.0 » 
NE = NOUT / N 
NE1 = NE - 1 
E = NE 

Form the coefficient array 

A(l) = 0.0 
A(N) = 0.0 
DO 10, 1=2, N-l 

TEMP = 2 * IN(I) - IN(I-1) - IN(I+l) 
A(I) = B * (TEMP + A(I-1)) 

10 CONTINUE 

DO 20, 1=1, N-l 
J = N-I 
A(J) = A(J) + B * A(J+l) 

20 CONTINUE 

C Insert the original points into OUT 
C 

C 

DO 30, 1=1. N 
K = NE*I - NEI 
OUT(K) = IN(I) 

30 CONTINUE 

C Handle the intermediate points 
C 

DO 40, J=l. NE1 
P = J/E 
Q = 1.0 - P 
P3 = P * (P * P - 1.0) 
Q3 = Q * (Q * Q - 1.0) 
DO 40, 1=1. N-l 

II = 1+1 
K = NE * I + J - NEI 
OUT(K) = Q*IN(I) + P*IN(Il) + Q3*A(I) + P3*A(Il) 

40 CONTINUE 
RETURN 
END 

Figure AS 

581 



582 David Colquhoun and F. 1. Sigworth 

IMPLEMENTATION MODULE SplineReal; 

PROCEDURE Spline (VAR In, Work, OUt: ARRAY OF REAL; 
InNumber INTEGER; 
Expansion INTEGER); 

(* From the InNumber input points, make (InNumber-l) * Expansion - 1 
output points, using cubic spline interpolation. The output 
points OUt[ Expansion * i] are equal to the corresponding input 
points In[i]. 
The Work array must have at least InNumber elements. 

*) 
CaNST 

c == 0.2674919; (* equals 1 I ( 2 + sqr(3) ) *) 

VAR 
p, q, 
p3, q3 
i,j.k,ini 

REAL; 
INTEGER; 

BEGIN 
(* Compute coefficients: forward calculation *) 

Work [0] : = o. 0; 
FOR i : = 1 TO InNumber-2 DO 

Work[i):= c * ( In[i-1] - 2.0 * In[i) + In[i+1] - Work[i-1] ); 
END; 

(* Back-substitution *) 
Work [InNumber-1] := -c * Work[InNumber-2]; 
FOR i := InNumber-1 TO 1 BY -1 DO 

Work[i-l] := Work[i-1) - c * Work[il; 
END: 

(* Copy the original points *J 
j := 0: (* j is the output pointer *) 
FOR i:=O TO InNumber-1 DO 

Out[j) :=In[i]; 
INC(j. Expansion); (* increment j by Expansion *) 

END: 

(* Compute the interpolated points *) 
FOR k:=1 TO Expansion-1 DO 

p:= FLOAT(k) I FLOAT(Expansion); 
q:= 1.0 - p; 
p3 : = p • ( p * p - 1. 0) ; 
q3 := q * ( q * q - 1.0): 
? .:= k: 
1n1:= 0; 
FOR i: =0 TO InNumber-2 DO 

Out[j]:= q * In{ini] + p * In[ini+1] 
+ q3 * Work[i) + p3 * Work[i+1]; 

INC(ini); 
INC(j. Expansion); 

ENO; 
END; 

END Spline; 

END SnlineReal. 

FigureA6 
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subroutine AMOCALL(npar,nvert,simp,theta,stepfac,functol,funk, 

& fmin,niter) 

c Subroutine to simplify call of AMOEBA.FOR from Press et al. (1992) 

c This subroutine uses the input values (see below) to: 

c (1) set up the starting simplex in simp(21,20) 

c (2) set the corresponding function values in fval(21) 

c 

c SIMP should be declared in calling program, e.g. as simp(21,20). 

c (SIMP is defined here, but because of problems in passing values 

c in 2-dimensional arrays with variable dimensions, it is simpler 

c to declare SIMP in the calling program) 

c 

c INPUT: 

c npar = number of parameters 

c nvert = npar+ 1 

c theta (npar) = initial guesses for parameters 

c stepfac = value to control initial step size, e.g. stepfac=O.1 

c starts with step size=O.l*initial guess. 

c functol = tolerance for convergence (should be set to machine 

c precision, or a bit larger -see Press et al.) 

c funk = name of subroutine that calculates the value to be 

c minimized 

c 

c OUTPUT: 

c theta = final values of parameters (in this version, set to the 

c parameters corresponding to the best vertex of final simplex). 

c frnin = corresponding minimum value for funk (theta) 

c niter = number of function evaluations done 

c 

c 

c 

real simp(nvert,npar),fval(21) ,theta(npar).step(20) 

EXTERNAL funk 

nvert=npar+l # of vertices in simplex 

FigureA7 
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The FORTRAN subroutine SPLINE (Fig. A5) accepts an integer array of N data values 
and fills a second integer array with the original points and interpolated values. The subroutine 
first computes the coefficients in an efficient manner that is equivalent to Gaussian elimination 
and backsubstitution. The N coefficients are kept in a real array A for further use if desired. 
The subroutine forces the second derivative of f to be zero at the first and last data points. 
This means that if a long record is to be interpolated in shorter segments, the segments 
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c 

c 

do j=l,npar 

step(j)=stepfac*theta(j) 

enddo 

do j=l,npar 

simp(l,jl=theta(jl 

enddo 

David Colquhoun and F. J. Sigworth 

!!start values=vertex 11 

fval(ll=funk(theta) !function value for these 

fac=(sqrt(float(nvert)I-1.)/(float(npar)*sqrt(2.» 

do i=2,nvert 

do j=1,npar 

simp(i,j)=simp (l,j) + step(j)*fac 

enddo 

simp(i,i-l)=simp(l,i-l) + step(i-l)*(fac+l./sqrt(2.1) 

do j=l,npar 

theta(j)=simp(i,j) 

enddo 

fval (i) = funk (theta) 

enddo 

!copy paramters into theta (for funk) 

!function value for these 

call AMOEBA(simp,fval,nvert,npar,npar,functol,funk,niter) 

c Return the best vertex 

c 

fmin=fval(ll 

do i=2,nvert 

if(fval(i) .It.fmin) then 

fmin=fval (i) 

do j=l,npar 

theta(j)=simp(i,j) 

enddo 

endif 

enddo 

RETURN 

end 

Figure A7 Continued. 

should have some overlap (e.g., ten data points) to allow smooth "splicing" of the interpo
lated segments. 

A MODULA-2 implementation of the same algorithm is given in Fig. A6. Here the 
coefficients ak are stored in the Work array while the input and output data are assumed to 
be in arrays of real values. 
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A3.3. Error Function Evaluation 

For computations involving the step response of Gaussian filters, a numerical approxima
tion for the error function is required. One of the simplest approximations for the complemen
tary error function is 

(AI6) 

where t = 11(1 + px); p = 0.47047; a, = 0.3480242; a2 = -0.0958798; a3 = 0.7478556; 
and where x is restricted to positive values. The error in this approximation is less than 2.5 
X 10-5• 

The error function itself can be evaluated as 

erf(x) = 1 - erfc(x) 

and for negative values of x. 

erf(x) = -erf( -x) 

The formula in equation A16 is from Hastings (1955), which also contains more exact 
formulas. These formulas can also be found in Abramovitz and Stegun (1964), p. 299. 

A3.4. A Calling Routine for AMOEBA 

The subroutine (in FORTRAN) designed to simplify calling of the simplex minimization 
routine by Press et al. (1992) is given in Fig. A7. This was discussed in Section 6.3. 
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