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It is almost 60 years since Heinz Schild devised a method
that allowed measurement of a genuine physical
quantity, the equilibrium constant for binding of a com-
petitive antagonist. The clever bit was that the measure-
ments could be made using responses from tissues
despite the fact that little or nothing was known about
how the agonist worked. Since then, attempts have
been made to generalise the Schild equation, but they
are all based on false premises. It turns out that gener-
alisation is usually not needed. His original simple result
is still valid in cases where several agonist molecules
must be bound to produce a response, even if the
agonist binding sites interact or are not identical.

Introduction
It is almost 60 years since Heinz Schild, working in the
late-lamented Pharmacology Department of University
College London (UK) [1], discovered a method for measur-
ing the affinity of a competitive antagonist for its receptor
[2–4]. His enormous achievement was to show how it was
possible to obtain a genuine physical constant, the equi-
librium constant for binding of an antagonist to a receptor,
from measurements of tissue responses, even when the
mechanism of action of the agonist was both complex and
unknown. Schild was generous in his acknowledgement of
Clark and Raventos (1937) [5], who mentioned that ‘‘An
alternative method of estimating antagonistic power is to
determine the concentration of B, which alters by a
selected proportion (e.g. tenfold) the concentration of A
needed to produce a selected effect’’. But they failed to
realise the potential of this approach, in particular that
this ‘proportion’ (in modern terms: the dose ratio) is a
function of the affinity constant of B for the receptor only.
That was Schild’s achievement. If a concentration of ago-
nist A0 produced a certain response in the absence of
antagonist, and an increased agonist concentration A1

evoked the same response in the presence of antagonist,
then the factor by which the agonist concentration had to
be increased, A1/A0, was defined as the dose ratio (denoted
r here).

Schild’s discovery was made many years before radi-
oligand binding was invented by Paton and Rang (1965)
[6]. In many cases, the results given by binding exper-
iments and by the Schild method agree well: for example,
there is excellent agreement [7] for a large number of
muscarinic-receptor antagonists, with affinities that vary
over six orders of magnitude. The Schild approach remains
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as important nowaswhen itwasfirst discovered, for several
reasons. One reason is that there are often not enough
receptors to do direct binding experiments. For example,
receptors at a synapse or recombinant receptors on a single
cell might be too few in number to be measurable. Another
reason is that receptors might be too heterogeneous to
enableunambiguous interpretationof ligand-bindingexper-
iments; but, if a specific agonist is available, the Schild
method can be used to examine only those receptors that
elicit the response. Recently, Wyllie and Chen [8] have
discussed the enduring importance of the Schild approach
in contemporary research.

The purpose of this review is to examine the conditions
under which the Schild equation is valid. Schild’s original
derivation considered a single binding site. It was shown
in 1973 [9] that the Schild equation gives the right
answer under far wider conditions than that. The question
continues to be misunderstood widely in the literature,
so it seems worthwhile to clarify and expand the 1973
results.

The early work

The Schild equation states that:

r ¼ 1þ cB [Equation 1]

where r denotes the dose ratio (or, better, the concentration
ratio) and cB is defined as the concentration of the antagon-
ist, B, expressed as a multiple of its equilibrium constant
(KB) for binding to its site. Thus, we define the normalised
concentration as:

cB ¼
½B�
KB

[Equation 2]

Use of these dimensionless, normalised concentrations
reduces greatly the amount of writing to be done.

The great beauty of this result is that the agonist does
not appear at all. The nature of the agonist, its concen-
tration, affinity and efficacy, are all irrelevant. The dose
ratio, that is, the extent of the rightward shift of the
equilibrium log-concentration-response curve produced
by the antagonist, should be the same regardless of the
nature of the agonist and the amplitude of response chosen
for the measurement. The simplicity of Schild’s result is
themore remarkable because it does not need knowledge of
the relationship between agonist occupancy and response.
The experiments shown by Arunlakshana and Schild
(1959) [4] were with muscarinic and histamine (H1) recep-
tors. These are G-protein-coupled receptors (GPCRs) and,
at the time, nothing at all was known about transduction
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mechanisms for these receptors. Even now, themechanism
cannot be written as a set of equations with any certainty,
which would be needed to predict the effect of an antagon-
ist. Nevertheless, the predictions of the simple theory were
verified with impressive accuracy. They observed that
equilibrium log-concentration-response curves showed a
parallel rightward shift when antagonist was added. The
extent of this shift, log(r), was independent of the nature of
the agonist and a plot of log(r � 1) against log(B) was a
straight line with a slope close to one, as the Schild
equation predicts. Schild therefore felt justified in inter-
preting the concentration of antagonist that produces r = 2
as being the equilibrium constant for the binding of
antagonist to the receptor, KB. Arunlakshana and Schild
(1959) also showed that the KB so estimated was the same
for muscarinic receptors in different tissues. The same was
true for H1 receptors. They proposed the estimation of KB

as a method of classifying receptors and this approach
remains useful even in the days of recombinant DNA.
James Black gives great credit to the role of Schild’s
methods in helping his own discovery of b-blockers and
H2-receptor antagonists [10].

Schild’s derivation of his famous equation was based on
the simplest case of a single binding site for the agonist. He
assumed that, if the occupancy of this site by agonist was
kept the same in the presence and absence of antagonist (by
raising the agonist concentration by a factor r), then the
measuredresponsewouldalsobe the same, regardless of the
details of the relationship between occupancy and response.
That relationship was entirely unknown at the time.

The Schild factor, (1 + cB), occurs also in the ‘Cheng-
Prusoff’ correction but, because that is merely a correction
for having fitted the wrong equation in the first place, it
will not be discussed here.

The scope of the Schild equation
The Schild method will give the correct equilibrium con-
stant for the binding of an antagonist under conditions that
can be put into words, as shown in Box 1. The term ‘binding
site’ is used here to mean the area of a receptor that binds
to a single agonist or antagonistmolecule. A receptormight
contain any number of such sites.

Under these conditions, the Schild equation will hold
exactly, regardless of the number of binding sites, regard-
less of how these binding sites interact with each other in
the presence of the agonist and regardless of whether all
the binding sites have the same affinity for A.

Why is this so? If we have some postulate about
the reaction mechanism, we can just write down the
Box 1. Necessary and sufficient conditions for the Schild

equation to be exact

(1) The antagonist, B, is a true antagonist that, alone, does not

change the conformation of the receptor.

(2) Binding of agonist, A, and antagonist, B, is mutually exclusive at

every binding site.

(3) B has the same affinity for every binding site.

(4) The observed response is the same if the occupancy of each site

by A is the same, regardless of how many sites are occupied by

B.

(5) Measurements are made at equilibrium.
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equilibrium equations in any particular case and show
that the Schild equation is predicted to hold. Explicit
examples are given in Box 2. But it would be good to have
a more general argument, for three reasons. First, there
are many sorts of receptor for which no explicit reaction
mechanism exists. Second, evenwhen there are reasonable
postulates about the mechanism, the derivation has to be
done separately for each different mechanism. Third, it
would be good to have an argument that gives a more
pictorial feel for what is happening that can be obtained by
doing the algebra. We wish to ask which class of mechan-
isms will obey the Schild equation.

First, consider a single binding site at which A and B
compete. In this case, the fraction of binding sites (pA) that
is occupied by A at equilibrium is:

pA ¼
cA

1þ cA þ cB
[Equation 3]

where the concentrations of A and B are expressed as a
multiple of their equilibrium constants for binding to the
site. Thus, we define normalised concentrations as:

cA �
½A�
KA

and cB�
½B�
KB

[Equation 4]

The result in Equation 3 is attributed commonly to
Gaddum [11], but it is actually much older and dates back
to Michaelis [12] in 1914.

Although Equation 3 is the simplest and most elegant
way of expressing competition between A and B at a single
class of sites, for our purposes, it will be better to divide top
and bottom by (1 + cB) to put the occupancy by A in to the
form:

pA ¼
cA

1þ cA þ cB
¼

cA
1þcB

� �

1þ cA
1þcB

� � [Equation 5]

The form of Equation 5 is less elegant but it shows that
the occupancy will be kept the same in the presence of
antagonist if the agonist concentration is increased by a
factor (1 + cB) and this is simply what the Schild equation
states. In every place where the agonist concentration
appears on the right-hand side, it is invariably divided
by the Schild factor, (1 + cB) and that is sufficient to imply
that the Schild equation is obeyed exactly, however com-
plex the mechanism.

The Schild equation is valid for receptors with more than

one binding site

All agonist-activated ion channels have more than one
binding site for agonist and antagonist. GPCRs might
function as dimers with two binding sites. Schild’s original
derivation does not deal with cases like these.

The approach through the Hill equation

The idea that several antagonist molecules might combine
with the receptor was discussed even before Schild, by
Gaddum (1943) [13]. His approach was through the Hill
equation and was essentially based on what was known
about the competition between oxygen and carbon mon-
oxide for binding to haemoglobin. Gaddum was clearly not
very happy with this approach because it was already



Box 2. Exact analysis for a complex mechanism: the glycine receptor flip mechanism

Figure I shows a ‘flip’ mechanism [30] but for a receptor with two

binding sites rather than three (two is sufficient for generality of the

results). It differs from standard mechanisms because it postulates

the existence of a ‘flipped’ conformation, intermediate between the

resting state and the open state.

In Figure I, A represents an agonist molecule, and B represents a

molecule of the competitive antagonist. The receptor has three

different conformations. The resting state of the receptor is denoted

R, the flipped (but still shut) conformation, F and the open

conformation, F*. In the presence of a competitive antagonist, there

are 18 states in which the receptor can exist. The key to getting the

right answer is to include all the states. One way of looking at why the

Hill equation approach fails is that it does not do so. For example,

non-liganded openings are included in the mechanism because, in

principle, they must occur. In practice, with real data, the rate of

spontaneous openings might be so low that they cannot be fitted in

practice, but the argument now is about principles.

The rules in Box 1 imply the existence of all 18 states and, as long as

all are included, the result comes out simply. They imply, for example,

the existence of complexes that have both agonist and antagonist

bound (ABR, ABF and ABF*) and the assumption that the binding of

antagonist does not change the conformation means that such mixed

complexes should behave like the same complexes without antago-

nist bound (AR, AF, AF*). Because we are assuming that true

equilibrium is reached, all the cycles in the mechanism are assumed

to obey microscopic reversibility [31].

Interaction between agonist binding sites

The mechanism shown in Figure I is more general than that

described before [30]. One of the elegant features of the original

mechanism was that a good fit to the data could be obtained when

it was assumed that agonist-binding sites were independent of

each other. In other words, for any given conformation (R, F or F*)

of the receptor, binding of the agonist to one site was independent

of whether the other site as occupied, so KA1 = KA2 etc. In this case,

the 18 states of the receptor could be divided into three different

affinity classes, each containing six states. These are the top,

middle and bottom planes in Figure I. In Figure I, however, we have

allowed for the possibility that agonist-binding sites might interact,

to justify the claim that this does not invalidate the Schild equation.

The equilibrium constant for binding if the first agonist to the

resting state of the receptor is denoted KA1, but once one site is

occupied, the second binding can occur with a different affinity,

denoted KA2. The notation is similar for the flipped (F) and open

(F*) conformations.

The equilibrium fraction of receptors in each of the 18 states can be

found easily, as for any other mechanism. Simply use the law of mass

action to express the equilibrium occupancy for each state, p, as a

multiple of the occupancy of, say, the resting state, R, which,

according to the numbering of states in Figure I, is denoted p18. For

example, p17 = 2cA1 p18 and p16 = 0.5 cA2 p17 = cA1 cA2 p18 and so on.

This, together with the fact that the occupancies add up to 1,

generates the 18 terms in the denominator. Thus, we can write, after

rearranging the 18 terms in the denominator:

p18 ¼ 1=d

where

d ¼ ð1þ cBÞ2ð1þ F 0 þ E0F 0Þ þ 2cA1ð1þ cBÞð1þ F 1 þ E1F 1Þ

þ cA1cA2ð1þ F 2 þ E2F 2Þ
[Equation I]

and we define normalised concentrations as

cA1 ¼
½A�
K A1

and cA2 ¼
½A�
kA2

[Equation II]

The equilibrium fraction in the open states (states 1 to 6 in Figure I),

for example, can be written,

popen ¼
E0F 0ð1þ cBÞ2 þ 2E1F 1cA1ð1þ cBÞ þ E2F 2cA1cA2

d

[Equation III]

The terms in the numerator are the same as those in the

denominator but for the six open states only.

Notice that states 4, 5 and 6 (BF*, ABF* and B2F*), which have either

one or two antagonist molecules bound, are counted as open states.

This is implicit in our assumption (Box 1) that binding of antagonist

has no effect, other than excluding agonist.

If we now divide top and bottom by (1 + cB)2 (compare Equation 5),

we get:

popen

¼
E0F 0 þ 2E1F 1

cA1

ð1þcBÞ þ E2F 2
cA1

ð1þcBÞ
cA2

ð1þcBÞ
ð1þ F 0 þ E0F 0Þ þ 2 cA1

ð1þcBÞ ð1þ F 1 þ E1F 1Þ þ cA1

ð1þcBÞ
cA2

ð1þcBÞ ð1þ F 2 þ E2F 2Þ
[Equation IV]

We now see that every time the agonist concentration, [A], occurs, it

is divided by the Schild factor (1 + cB). Therefore, popen must obey the

Schild equation exactly and give the correct estimate of the

equilibrium constant, KB, for binding of the antagonist.

These results are written in terms of the affinities for the resting

state only (KA1 and KA2). The affinities for the other states are implicit

in the constraints implied by microscopic reversibility. These are as

follows:

F 1 ¼ F 0

K A1

K F1

F 2 ¼ F 1

K A2

K F2

E1 ¼ E0

K F1

K o1

E2 ¼ E1

K F3

K o2

[Equation V]

With these relationships, the denominator in Equation IV, d1 = d/

(1 + cB)2, say, can be written in a form that has terms that depend on

the affinities for resting, flipped and open states.

d1 ¼
�

1þ 2
cA1

ð1þ cBÞ
þ cA1cA2

ð1þ cBÞ2
�

Resting

þF 0

�
1þ 2

cF1

ð1þ cBÞ
þ cF1cF2

ð1þ cBÞ2
�

flipped

þE0F 0

�
1þ 2

co1

ð1þ cBÞ
þ co1co2

ð1þ cBÞ2
�

open

[Equation VI]

The three major terms now correspond to the three horizontal

planes in Figure I, as indicated in Equation VI.

In the case where the agonist binding sites do not interact, so

KA1 = KA2, these results simplify to the more elegant form:

d1 ¼
�

1þ cA

ð1þ cBÞ

�

Resting

2

þ F 0

�
1þ cAF

ð1þ cBÞ

�

flipped

2

þ E0F 0

�
1þ cAo

ð1þ cBÞ

�
open

[Equation VII]

If we denote the occupancy of state i as pi, then the overall

fractional occupancy of sites by agonist is given by:

pocc ¼ 0:5ðp2 þ p5 þ p8 þ p11 þ p14 þ p17Þ þ p1 þ p7 þ p16

[Equation VIII]

Writing this explicitly again shows that it has the Schild form: every

occurrence of the agonist concentration. [A] occurs in the form

[A]/(1 + cB).

Affinity classes

It is helpful in trying to understand the reason for these results to

consider separately the top (resting), middle (flipped) and bottom

(open) planes in Figure I.

The fraction of the six resting states (top plane) that is occupied by

agonist is given by:

prest ¼
0:5ðp14 þ p17Þ þ p16

p13 þ p14 þ p15 þ p16 þ p17 þ p18

¼

�
cA1

ð1þcBÞ þ
cA1cA2

ð1þcBÞ2

�
�

1þ 2 cA1

ð1þcBÞ þ
cA1cA2

ð1þcBÞ2

�

[Equation IX]

Once again, this is seen to obey the Schild equation exactly.

If the agonist binding sites do not interact, so KA1 = KA2, then

Equation IX reduces to simply:

prest ¼
cA

1þ cA þ cB

¼

�
cA

1þcB

�

1þ
�

cA

1þcB

� [Equation X]
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This is identical with the simple expression for a single sort of site

(Equation 5), as might be expected because now all six resting states

have the same affinity for the agonist.

Exactly similar expressions hold for the flipped states (middle

plane) and open states (bottom plane) if the appropriate affinities are

used.

These results show that the occupancies in each separate class of

affinity states are kept constant in the presence of an antagonist, if the

agonist concentration is raised by the Schild factor, (1 + cB).

Furthermore, the fraction of all receptors that is in each affinity class

follows directly from Equation VI or Equation VII and this is clearly

also kept constant.

This result obviously generalises to any number of affinity classes,

each containing any number of states.

Analysis of a mechanism in which conformation changes are not

concerted

It might be stated that the mechanism in Figure I is not entirely

general because all of the conformation changes are concerted.

Consider another example in which subunits are not assumed to all

have the same conformation. Figure II shows a simple example. The

receptor is supposed to consist of two subunits, each of which can

bind agonist separately and change conformation, according to the

simple scheme of del Castillo and Katz (1957) [32] and each can be

blocked by a competitive antagonist, B.

If the two subunits are identical and independent, then it is trivial to

show that the Schild equation is obeyed exactly. But what happens if

the subunits are not identical in their ability to bind agonist and/or in

their ability to change conformation? And what happens if the

subunits are not independent, in the sense that the behaviour of one

subunit depends on whether or not the other subunit is occupied by

agonist or not? Both of these possibilities are encompassed in Figure

II. The equilibrium constants for the binding of agonist are denoted

K1j for subunit 1 and K2j for subunit 2, with j = 0 if the other subunit is

not occupied by agonist and j = 1 if the other subunit is occupied by

agonist. The same notation is used for the efficacies, Ei j. Normalised

agonist concentrations are defined in the obvious way, ci j = [A]/Kij.

In general, the scheme in Figure II has 16 distinct states of the

receptor. Each of the four states of subunit one can be combined with

any of the four states of subunit 2. After rearranging the 16 terms in

the denominator, we can write, as in Equation I:

p16 ¼ 1=d

where

d1 ¼
d

ð1þ cBÞ2

¼ 1þ c10

ð1þ cBÞ
ð1þ E10Þ þ

c20

ð1þ cBÞ
ð1þ E20Þ þ

c10c21

ð1þ cBÞ2
ð1þ E10Þ

� ð1þ E21Þ
[Equation XI]

Thus, if, for example, the only open state is that with both subunits

in state 1, AR* (Figure II), then the equilibrium response is:

popen ¼
E10E21

c10c21

ð1þcBÞ2

d1

[Equation XII]

Once again, the agonist concentration occurs only in terms with the

form [A]/(1 + cB), so the Schild equation is obeyed exactly and gives

the correct KB.

If the subunits are identical and independent, then the subscripts

are not needed, all cij = cA say, and Equation XII reduces to:

popen ¼
�

EcA

1þ cB þ cAð1þ EÞ

�2

[Equation XIII]

This is the square of the expression for a single subunit (because

both must be in state 1 to get a response in this example).

Figure I. Representation of the flip mechanism [30] for a receptor that contains two interacting and non-identical binding sites, in the presence an agonist (A) and a

competitive antagonist (B). The 18 states are numbered arbitrarily.
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Figure II. A receptor that consists of two subunits of the del Castillo Katz (1957)

type.
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known in 1943 that haemoglobin binds four oxygen mol-
ecules but has a Hill slope of only about 2.5.

This had already been explained by Adair (1925). It
happens because some molecules of haemoglobin have
only one, two or three oxygen molecules bound, rather
than four, and these cannot be neglected, By contrast, the
Hill equation is essentially a limiting case in which all
molecules are either unoccupied or have all four sites
occupied.

Arunlakshana and Schild (1959) mention a similar
approach but do not use it. It is clear that Schild thought
that a real equilibrium constant for the antagonist could be
estimated only when the Hill slope was 1 [3]. In his 1973
review, Schild [14] pointed out that genuine equilibrium
constants were needed to classify receptors and said ‘‘It is
doubtful whether valid data, suitable for receptor classifi-
cation can be derived, unless the [Schild plot]. . . is linear
with slope = 1’’.

Hill himself said ‘‘There can, however, be little doubt
now that my equation y = Kxn/(1 + Kxn), based on the
aggregation theory, is wrong, or at least a serious over-
simplification’’. He added later, ‘‘In 1962, when I wrote the
preceding commentary, I had supposed that ‘Hill’s
equation’ and all its works had been dead and buried for
more than a third of a century. To my astonishment, in
1963, I found it had been resurrected in 1961. . . The
equation originally deduced in 1910 from the aggregation
theory had been laid decently to rest in the 1920s; its body
lay mouldering in the grave, but apparently its soul goes
marching on’’ ([15], pp. 105–106).

In the same spirit, Bernard Katz [16] wrote, in his
obituary for A.V. Hill: ‘‘It is generally realised that the
Hill equation is strictly applicable only if all n molecules
react simultaneously (which is unlikely), and it is theor-
etically unjustified if intermediate steps cannot be
ignored. Nevertheless the formula has been widely used
by many investigators. It has been a typical case of a
useful theoretical ‘half-truth’, cutting corners and over-
simplifying the real situation, but still enabling one to
gain some insight and to make practical, if only approxi-
mate, calculations.’’

Gaddum and Schild, then, realised that the approach
through the Hill equation would not give the right results
and Gaddum (1943) [13] explained clearly what was wrong
with it. Although they cited Hill forms from time to time,
they did not use them. But others were less cautious and
the incorrect approach, through the Hill equation, has
persisted to the present day. The Hill-equation approach
www.sciencedirect.com
is described in standard textbooks [17,18] and also inmany
papers [19–22].

For example, in Ref. [17], a ‘‘general form of the Gaddum
equation’’ is proposed, which (in the notation used here)
can be written as:

pA ¼
cnA

1þ cnA þ cmB
[Equation 6]

where ‘‘n and m represent the numbers of agonist and
antagonist molecules, respectively, that interact with the
receptor’’. From this, a ‘modified Schild equation’ can be
obtained [17]:

rn ¼ 1þ cmB [Equation 7]

As was known even in the 1920s, and discussed by
Gaddum (1943) [13], n and m in this sort of equation are
Hill slopes that cannot be equated with the ‘‘number of
molecules’’, so this result is clearly baseless.

Likewise, it has been said [18] that ‘‘Schild analysis
cannot give a precise estimate of KB e.g. when two
molecules of agonist must bind to two cooperatively
linked sites for receptor activation to occur (Sine and
Taylor, 1981 [23]). An example is the nicotinic cholin-
ergic receptor on skeletal muscle linked to Na+ channel
[sic] opening. In this case the pA2 value calculated from
the Schild analysis does not correspond to the KB for
receptor antagonist interactions’’. Well, actually, it does.
In fact, Sine and Taylor were concerned with the case in
which there are two binding sites that have different
affinities for the antagonist and do not claim that Schild
analysis is affected by interaction between the agonist
binding sites.

Others [22] use an equation similar to Equation 7 but do
not make the mistake of calling n and m the number of
molecules that combine with the receptor. They are
referred to properly as Hill slopes. The analysis that
follows still makes no sense, nevertheless, because the Hill
equation is empirical. Therefore, it cannot be used to
estimate real physical-equilibrium constants.

The reason that this Hill-equation approach is mislead-
ing is because it has not got a proper physical basis.
Reactions of order n do not occur and n in the Hill equation
does not represent the number of binding sites. Therefore,
it cannot be used to represent the action of a competitive
antagonist. Equation 7 is therefore derived from an incor-
rect premise and cannot be used for anything other than
empirical curve fitting.

Fortunately, when the problem is analysed properly, the
result turns out to bemuch simpler. It is a pity that neither
Gaddum nor Schild tried to analyse competitive antagon-
ism using the Adair (1925) [24] mechanism. If they had
done so, they would have found that it predicted that the
Schild equation would be obeyed exactly. Indeed, this is
true for a wide class of mechanisms and so empirical
coefficients, such as those in Equation 7, are unnecessary.
It was pointed out in 1973 [9] that a mechanism of the
Monod-Wyman-Changeux type obeyed the Schild equation
exactly, but in that paper, there was no explicit consider-
ation of the case in which the binding sites for agonist
interact with each other. It turns out that this makes no
difference to the conclusions.
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Why do complicated mechanisms obey the Schild
equation?
Under the conditions outlined in Box 1, the Schild equation
is obeyed exactly, whether or not the agonist-binding sites
interact.

The justification for this statement is given in Box 2, by
the explicit analysis of particular mechanisms. The mech-
anisms chosen are sufficiently complicated that it is clear
that results of the same form will be obtained however
many states with different agonist affinities might exist
and however agonist-binding sites interact.

For now, though, a much abbreviated form of the argu-
ment in Box 2 will be given with the aim of conveying the
flavour of the reasoning without getting bogged down in
the detail.

Consider, for example, a glycine-activated ion channel.
This sort of receptor needs to bind three agonist (glycine)
molecules for full activation [30]. The activation of the
receptor can be described by a mechanism in which the
binding sites interact strongly, so that the more molecules
are bound, the higher the affinity of the remaining vacant
sites. It can also be described by a mechanism that makes
more physical sense (the flip mechanism), in which the
binding sites are independent (do not interact) but in which
the receptor can undergo a conformational change to a
higher affinity state (‘flipped’ state) while still shut.

The assumption made in the Schild analysis is that,
whenever we have identical occupancies by the agonist of
every sort of binding site, the observed response will be the
same.

Consider each individual binding site, rather than the
whole receptor. In fact, it suffices to consider all states of
the receptor that have the same affinity of agonist. For
each such class, the occupancy by agonist of the sites in
that class will be described by the simple competitive
Equation 3. Different affinity classes will have different
values for KA, and so different cA values, but it remains
true that, every time the agonist concentration occurs on
the right-hand side, it is in the form [A]/(1 + cB). It follows
that the effect of adding an antagonist can be compensated
by raising the agonist concentration by a factor r = 1 + cB at
every class of site. The fraction of sites in each affinity class
also stays constant under these circumstances. Thus, the
Schild equation is obeyed exactly and gives a correct
estimate of the real physical equilibrium constant for
the binding of the competitive antagonist.

In the case of the glycine receptor examples, all the
conformational changes are concerted (all the subunits
change simultaneously), so that, at any instant, each re-
ceptor is in one or another of its affinity states. But this is
not an essential part of the argument. Box 2 shows that the
Schild equation is obeyed exactly if subunits are not all in
the same conformation and that this is still true, even if the
subunits interact and if they are not identical (for agonist
binding) (Box 2).

What happens if the antagonist is actually an inverse
agonist or a weak partial agonist?
All that has been said so far relies explicitly on the
assumption that we are dealing with a pure competitive
antagonist. In other words, the antagonist has no effects
www.sciencedirect.com
other than to occlude the binding site and so prevent
binding of the agonist. It follows that a pure antagonist
has exactly the same affinity for both active and inactive
conformations of the receptor.

Is this condition verified for most antagonists? And does
it matter if it is not?

In fact, at least for GPCRs, most competitive
antagonists seem to be inverse agonists (e.g. [25]). This
is shown by the fact that, when they are applied to a
preparation in which receptors are active in the absence
of agonist, this activity is inhibited. From the two-state
model point of view, this is what would be expected; it is
impossible that two ligands should have exactly the same
relative affinity for active and inactive conformations.

It is also possible that a very weak partial agonist might
be mistaken for a pure antagonist but, if it were so weak
that the response was undetectable, the conclusions drawn
here should be valid to a good approximation.

Itmakes little difference to any of the conclusions drawn
here if the ‘antagonist’ is actually an inverse agonist [9],
provided that the tests are done with an efficacious agonist
and the spontaneous level of activity of the receptor, in the
absence of agonist, is near zero. That is the case for most
agonist-activated ion channels and also for most GPCRs.
Mutant receptors might show much increased amounts of
spontaneous activity and, for them, the theory presented
here would have to be modified accordingly.

Some practical problems
It is the primary purpose of this article to explore the
conditions under which the Schild equation is obeyed
exactly and gives the correct equilibrium constant for
the binding of a competitive antagonist. Nevertheless, it
is worth mentioning briefly some practical matters that
can arise in real experiments. Some of the hazards are as
follows.

Problems in attaining genuine equilibrium

The assumption that equilibrium has been reached is
important. It cannot be expected that the Schild equation
will give good results with responses that are inherently not
at equilibrium, such as synaptic currents or FLIPR (fluor-
escence imaging plate reader) assays. In the case of a high-
affinity antagonist, it is expected that itwill take a long time
for equilibrium to be attained. In the absence of agonist, the
time constant for the exponential approach towards equi-
librium can be written as k�B(1 + cB), where k�B is the
dissociation-rate constant for the antagonist [26]. This will
usually be slow for a high-affinity antagonist. This means
that the Schildmethodmight not be feasible for antagonists
withequilibriumconstants in thepicomolar range, forwhich
equilibration might take hours rather than minutes to
occur. This is a question that needs to be tested experimen-
tally, if only because re-equilibration of antagonist occu-
pancy when agonist is added may be faster than expected
[27]. Clearly, the Schild method cannot be used at all for
antagonists that bind irreversibly (k�B = 0).

Desensitisation

Desensitisation is almost universal and it is often a pro-
blem when attempting to measure equilibrium responses.
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There are two obvious solutions. One is to apply agonist for
sufficiently long that desensitisation has reached equi-
librium. Although there are no satisfactory explicit mech-
anisms for desensitisation, the considerations discussed
here suggest that the extra-high affinity-desensitised
states will not invalidate the Schild approach if they have
reached equilibrium. The other solution is to apply agonist
sufficiently fast that a plateau response can be obtained
before much desensitisation has occurred. Of course, it is
essential that the agonist and antagonist have equilibrated
with the receptor by the time this plateau is reached, so
this method is not going to work if the antagonist is slow or
desensitisation is too fast, or both. It is worth remembering
also that attainment of a plateau, with no visible sag in the
response, is not sufficient reason to believe that desensi-
tisation has been avoided [28].

Antagonists might have more than one effect

For example, competitive neuromuscular-blocking agents
can also, as a separate effect, block the ion channel itself. In
this type of case, methods have to be devised to separate
the two effects.

Conclusion
Even 60 years after Gaddum pointed out that the Hill
equation was inappropriate for the analysis of competitive
antagonism, it continues to be used widely. It is wrong and
the right analysis gives a much simpler result. Most re-
ceptor mechanisms, under the rather weak assumptions
summarised in Box 1, predict that the Schild equation will
be obeyed exactly by a competitive antagonist and that the
Schild analysis will give the correct equilibrium constant of
binding of the antagonist to the receptor.
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