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SUMMARY 

The hyperbola Y = Vx!(K + x) occurs frequently in biochemistry (the 
Michaelis-Menten equation) and related subjects. The estimates of the 
parameters Vand K obtained by the method of least squares (applied to both 
the observations and their logarithms) are compared with the conventional 
estimates from linear transformations by using simulated normally and 
lognormally distributed observations. 

With homoscedastic normal observations the least-squares (and thus 
maximum-likelihood) estimates of Vand Khave substantially smaller variance 
and less bias than the estimates from the best of the linear transformations 
unless the experimental results are very precise. 

When the coefficient of variation of the observations is constant none of 
the methods tested stands out as uniformly the best. There is a strong positive 
correlation between the estimates of Vand K whichever method of estimation 
is used. 

1. THE PROBLEM 

THE problem to be considered is how best to estimate the parameters, V and K, of the 
rectangular hyperbola 

y= Vx 
K+x' 

(1) 

where Y is the dependent variable and x the independent variable. This equation 
occurs often in biological sciences; for example in enzymology Y is the initial velocity 
of an enzyme-catalysed reaction, x is substrate concentration, V is maximum velocity 
(when x--Ho) and K is the Michaelis constant. 

Equation (1) can be transformed to produce linear plots in three ways: 

Y= V-K(f), (2) 

x x K 
(3) -=-+-Y V V' 

~=~+~G)· (4) 

In practice one of these linear plots, usually 1/ Yagainst l/x according to equation (4), 
is fitted by eye or unweighted least squares to obtain estimates of V and K from the 
slope and intercept of the fitted line. Dowd and Riggs (1965) have compared the 
estimates of the parameters obtained by these three transformations using simulation 
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methods. They found that the most commonly used transformation (equation (4), 
which is known to biochemists as the Lineweaver-Burk plot) is outstandingly the 
worst of the three methods. 

Several improvements on the linear transformations have been proposed (see, for 
example, Wilkinson, 1961; Bliss and James, 1966; Cleland, 1963, 1967). It has been 
assumed in almost all discussions of the problem that the best (unbiased and minimum 
variance in small samples) estimates will be given by the method of least squares, i.e. 
by minimizing ~ w(Y - Y*)2 where y* is calculated from equation (1), Y is an 
observed value of the dependent variable and w is the reciprocal of the variance of Y. 
There is, however, no evidence that this is so even when the variance of Y is constant 
and the error in Y is normally distributed. Also the behaviour of the least-squares 
estimates when the variance of Y is not constant, or Y not normally distributed, is of 
considerable interest in selecting a method of estimation, since in practice it is often 
not known whether the variance is constant and the distribution of the observations 
is virtually never known. Furthermore, even when the least-squares estimates are, in 
some sense, the best estimates, none of the discussions referred to has considered 
whether or not the improvement on the linear transformations is sufficiently large to be 
of practical importance. The study of Dowd and Riggs is therefore extended, in this 
paper, to compare also the method of least squares, applied to both the observations 
and their logarithms using normally and lognormally distributed simulated observa­
tions. 

In the case of normal hQmoscedastic observations the least-squares estimates are 
also the maximum-likelihood estimates (see, for example, Draper and Smith, 1966, 
p.265). 

2. METHODS 

2.1. The Model for Simulation 
Dowd and Riggs (1965) chose an experimental arrangement representative of 

current practice by inspection of 28 sets of results in six consecutive issues of the 
Journal of Biological Chemistry. The arrangement chosen by them consisted of five 
observations of Y, one at each of the values x = 2·5, 5·0, 10·0, 20·0 and 40·0, with 
V = 30 and K = 15. The same design has been used throughout this work. 

A digital computer was used to generate random normally distributed values of Y 
with expectations 30x/(15+ x), and with various specified standard deviations. Five 
such values constituted one simulated experiment and estimates of V and K were 
obtained from it by each of the methods under investigation. Normally distributed 
random variables were generated using a procedure based on the algorithms of Pike 
and Hill (1965) and Pike (1965). 

2.2. Estimation Methods 
Straight lines were fitted by unweighted least squares for each of the linear 

transformations. Least-squares estimates were obtained by finding the values of 
V and K (constrained to be positive) needed to minimize 

~(Y_ Y*)2. (5) 

Least-squares estimates using the logarithmic transformation were obtained by 
minimizing 

~ (log Y -log y*)2. (6) 



132 APPLIED STATISTICS 

The minimization was carried out by a direct search method, patternsearch, 
written by M. Bell of the University of London Institute of Computer Science on the 
basis of the work of Hooke and Jeeves (1961). The procedure given by Bell and Pike 
(1966) is very similar to patternsearch. Bell's patternsearch procedure, and an example 
of the contours for the sum of squares surface (eq. 5), are included in "Lectures on 
statistics with applications in biology and medicine" (Colquhoun, D. In preparation). 
Patternsearch has been successfully used for the fitting of more complex curves with 
five or six parameters (Colquhoun, 1968). The initial guesses for the minimization were 
(30, 15) for (V, K) in most runs but, as long as V and K were constrained to be 
positive (as they must be on physical grounds), it was found that initial guesses of 
(1,1), (1,300), (300,1) and (300,300) all resulted in attainment of the same minimum 
as (30, 15) in a series of 20 simulated experiments chosen to give a very wide range of 
estimates. The minimum was virtually always reached after fewer than 220 evalua­
tions of equation (1). 

Generality of results 
The results given are independent of the particular values (30 and 15) chosen for 

the parameters. If V is multiplied by any factor then as long as the standard deviation 
of Y is altered by the same factor all the estimates of V are simply changed by this 
factor. Similarly if K and the values of x used are multiplied by any factor, the 
estimates of K are altered by the same factor. The results will, however, only apply to 
experiments in which the values of x chosen are the same in relation to K, and the 
standard deviations the same in relation to V, as in the model used for simulation. 

3. RESULTS 

To facilitate comparison the results are presented in a form similar to that used by 
Dowd and Riggs (1965). 

The mean-square error in Table 1 is calculated as the sum of the squares of 
deviations of individual estimates from their true values divided by the number of 
estimates (N). 

The results obtained using the three linear transformations confirm those of 
Dowd and Riggs (1965) and they have been included to enable comparisons to be 
made with the least-squares estimates. 

3.1. Normally Distributed Observations with Small Error of Constant Magnitude 
A value of 0·2 was used for the standard deviation (a) of Yat each value of x so 

that the coefficient of variation of Y decreases from 4·78 per cent at the lowest x value 
to 0·91 per cent at the highest. 

From the distribution of the estimates of V and K shown in Fig. 1 and the results 
in Table 1, it can be seen that the unweighted least-squares (and maximum-likelihood) 
method gives the best estimates though they are only slightly better than the estimates 
obtained by the best of the linear transformations (in this case xl Y against x). These 
results hold good whether the criterion used to compare methods of estimation is their 
variance, bias or mean-square error. 

There is a very high positive correlation between the estimates of Vand K whatever 
method of estimation is used. Similar high correlations were also seen using the other 
models for error as shown in Table 1. 
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FIG. 1. Distributions of estimates of V (left-hand column) and K (right-hand column) 
obtained by five methods from 500 replicate simulated experiments. Model (1): Normally 

distributed observations with small constant variance. 
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TABLE 1 

Mean, variance (Var) and mean-square error (MSE) of the estimates of V and K obtained 
in N simulated experiments, and the product moment correlation coefficient (r) between 
the estimates. The methods of estimation are (1) Yagainst Y/x, (2) x/ Y against x, 
(3) 1/ Yagainst I/x, (4) unweighted least squares, (5) log transform least squares 

V K 
Model Method r 

Mean Var MSE Mean Var MSE 

(1) 29·9 0·60 0·61 14'9 0·78 0'79 0'97 
Normal (2) 30·0 0·30 0·30 15·0 0·44 0·44 0·93 
a= 0·2 (3) 30·2 4'82 4·86 15·2 3-85 3-88 0·99 
N= 500 (4) 30·0 0·26 0·26 15·0 0·35 0·35 0·93 

(5) 30·0 0·63 0·63 15'0 0'83 0'83 0'97 

2 (1) 28·0 12·2 16·2 13-6 13-9 15·9 0·94 
Normal (2) 31·0 18·9 19·9 16·7 34·9 37-6 0'97 
a = 1·0 (3) t t t t t t 1·0 
N= 748+ (4) 30·4 7·5 7·6 15·6 10'5 10'8 0·93 

(5) 31-1 32·4 33·5 16'7 48·9 51·6 0·98 

3 (1) 29·7 2·89 2'96 14·8 1'91 1'95 0·93 
Normal (2) 29·9 3'99 3-99 15·0 2·88 2·88 0'95 

CV= 4'7% (3) 30·3 7·53 7·61 15·3 4·78 4·88 0'97 
N= 750 (4) 30·0 4'58 4'58 15·0 4·10 4·10 0·95 

(5) 30·0 2·99 2'99 15·1 2·01 2·01 0'93 

4 0) 24·8 52·5 79'8 10·4 33'7 54·6 0·92 
Normal (2) 33-6 350 362 19'9 503 526 0'96 

CV= 23'3% (3) t t t t t t 1·0 
N= 750 (4) t t t t t t 1·0 

(5)§ 32·6 164 171 18'1 151 161 0·95 

5 (1) 29·8 3'53 3'56 14'8 2·28 2·32 0·94 
Lognormal (2) 30·1 4·60 4'60 15·1 3'17 3·18 0'95 
CV= 4'7% (3) 30·2 7-89 7-92 15·2 5·02 5·04 0'97 
N= 500 (4) 30·2 5·38 5'39 15·1 4·59 4·60 0·95 

(5) 30·1 3-64 3·65 15·1 2·36 2·36 0·94 

6 (1) 26·0 63·2 79·4 11·2 40'8 55·0 0·94 
Lognormal (2) 33·6 381 394 18'8 299 313 0·98 
CV= 23% (3) t t t t t t 0·99 

N= 750 (4) t t t t t t 1·0 
(5) 33·5 340 352 18·2 248 257 0·98 

t Values too large to be meaningful. 
t Two experiments which gave near infinite estimates have been omitted. This has a noticeable 

effect on the results only for methods (2) and (5). 
§ Two experiments which gave near infinite estimates using method (5) have been omitted. 
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3.2. Normally Distributed Observations with Large Error of Constant Magnitude 
a = 1·0 so that the coefficient of variation decreases from 23·3 per cent to 4·6 per 

cent. 
From the results shown in Fig. 2 and Table 1 it can be seen that it is in this case 

that the unweighted least-squares (and thus maximum-likelihood) method shows the 

300 

ISO 

o , 

r:l 15 

15 

300 

150 

o ' 
15 

300 

150 

o ' 
<0 15 

True value 

, 
45 

45 

45 

v 

60 

6.0 

60 

Y against Yjx 

, , 
75 90 

xjY against x 

, 
75 90 

IjYagainst Ijx 

75 90 

Unweighted 
least squares 

L _L ....l. _L 

45 60 75 90 

log transform 
least squares 

300 

150 

300 

150 

300 

150 

o 

300 

150 

o 
30 45 60 75 90 >100 <0 

True value .. , 
I 

K 

, 
75 

-'-
90 

, 
45 

, 
60 30 

, 
45 60 75 90 

- ,-II 
45 60 75 90 

, '-
30 45 60 75 90 

15 30 45 60 75 

FIG. 2. Distributions of estimates of V (left-hand column) and K (right-hand column) 
obtained by five methods from 750 replicate simulated experiments. Model (2): Normally 
distributed observations with large constant variance. 

biggest advantage over the other methods. As found by Dowd and Riggs (1965), the 
best of the linear transformations in this case is Y against Y/x, but the unweighted 
least-squares estimates are substantially better than those obtained by this method, 
having both smaller variance and less bias. 
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3.3. Normally Distributed Observations with Small Error, Increasing with Y 
The standard deviation of Y was 0·2 for the lowest value of x and increased in 

direct proportion to the expectation of Y so that the coefficient of variation of Y 
remained constant at 4·7 per cent. 

The results in Fig. 3 and in Table 1 show that the estimates obtained by the log 
transform least-squares method have less bias but slightly larger variance than the 
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FIG. 3. Distributions of estimates of V (left-hand column) and K (right-hand column) 
obtained by five methods from 750 replicate simulated experiments. Model (3): Normally 
distributed observations with small constant coefficient of variation. 

estimates found using the best linearizing transformation (Yagainst Y/x in this case) 
so the mean square errors are similar for both methods. The unweighted least-squares 
method, when used with observations with non-constant variance, is seen to give 
results which are worse than those obtained by either of the two best linear trans­
formations. As usual the estimates obtained by the double reciprocal plot, equation (4), 
were worse than those by any other method. 
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3.4. Normally Distributed Observations with Large Error, Increasing with Y 
At the lowest x value a = 1, increasing so that the coefficient of variation of Y 

was constant at 23·3 per cent. This model represents experiments with unusually 
large errors. 

From Fig. 4 and Table 1 it can be seen that the log transform least-squares estimates 
tail towards higher values, giving a positively skewed distribution with occasional 
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FIG. 4. Distributions of estimates of V (left-hand column) and K (right-hand column) 
obtained by five methods from 750 replicate simulated experiments. Model (4): Normally 
distributed observations with large constant coefficient of variation. 

excessively high estimates. As a result there is some positive bias in the estimates. The 
only method which did not give occasional estimates tending towards infinite values 
was the plot of Yagainst Y/x and the estimates by this method have a smaller variance 
than those by any of the other methods. They are, however, very biased towards low 
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values. Using Yagainst Y/x more than 80 per cent of estimates of both V and K were 
less than the true values, whereas using log transform least squares the figure was 
about 50 per cent. 

3.5. Lognormally Distributed Observations with Small Error 
Values of Y the logarithms of which are normally distributed were obtained by 

generating normally distributed random variables with means of log {30x/(15 + x)}, 
and with a constant standard deviation of 0·0467. The antilogarithms of these 
variables were taken as the simulated observations. The expectation of Y itself should 
not in this case be exactly 30x/(15+x) but somewhat larger. The standard deviation 
of Y increases in such a way that the coefficient of variation of Y is approximately 
constant at 4·7 per cent. 

3.6. Lognormally Distributed Observations with Large Error 
Experiments were simulated as described for model (5) except that the standard 

deviation of the normally distributed log Y was constant at 0·233 so that the coefficients 
of variation of the lognormally distributed Y were approximately constant at 23 per 
cent. In a typical run of 250 experiments all five coefficients of variation were between 
21· 3 and 24· 3 per cent. 

In spite of the fact that models (5) and (6) are not strictly comparable with the 
previous ones it can be seen from Table 1 that the results obtained using lognormally 
distributed observations were qualitatively similar to those obtained when the 
distribution of observations is normal (models (3) and (4)). The histograms of the 
distributions of the estimates have therefore not been given separately. 

4. DISCUSSION 

The results which have been presented indicate that, in the case when the error of 
the observations is reasonably constant, estimation of V and K by the method of 
least squares gives a worthwhile improvement over the best of the linear trans­
formations unless the experiments are very precise. Furthermore, which of the linear 
transformations is the best depends on whether the error is large or small, whereas the 
method of least squares gives the best estimates, in this case, whatever the size of the 
error. 

There is no doubt that the double reciprocal plot of 1/ Yagainst l/x gives uniformly 
the worst estimates, as Dowd and Riggs (1965) found. 

In the case where the standard deviation of the dependent variable increases in 
proportion to its expectation so that the coefficient of variation of the observations is 
constant the best method of estimation is not so obvious. When the coefficient of 
variation has the reasonable value of 4·6 per cent there is little to choose between the 
log transform least-square estimates and those obtained by the Yagainst Y/x trans­
formation. The latter estimates are, as usual, the most biased towards low values but 
have an only very slightly smaller variance. It is of interest that in this case it would 
certainly be better to use a linear transformation (except for 1/ Y against l/x) than to 
use unweighted least squares. 

When the coefficient of variation has the perhaps unrealistically large value of 
23·3 per cent, the distribution of estimates obtained using the log transform least­
squares method shows tailing towards high values and two of the 750 experiments 
produced estimates of V and K which tended towards infinity. These have been 
omitted as noted in the footnote to Table 1. However, about 50 per cent of estimates 
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were below the true value for both V and K. The unweighted least-squares method 
produced much more severe tailing, there being many very large estimates. Again 
only the plot of Y against Y/x could be relied upon not to produce occasional 
absurdly high estimates though in this case it is extremely biased and more than 
80 per cent of estimates were below the true value for both V and K. 

The log transform least-squares method has been considered by NeIder (1966, 
1968), who describes a non-iterative approximation to it which is different from all 
of the methods used here. 

The reason why the plots of 1/ Y against I/x and x/ Y against x can produce such 
large errors in particular experiments is that the intercept (in the former case) and slope 
(in the latter) of the linear plot occur in the denominator of the expressions for V and 
K. It is quite possible for the slope or intercept occasionally to be close to zero so 
occasional huge (positive or negative) estimates of V and K are obtained. However 
when Y is plotted against Y/ x the slope of the line is - K and the intercept is V. Since 
neither the slope nor the intercept occurs in the denominator absurdly large estimates 
of V and K are never found using this method and in the case of model (4) this method 
actually gives a smaller scatter of estimates than the log transform least-squares 
method. 

Although the plot of Y against Y/x never gives huge errors it is badly biased 
towards low values if the experimental errors are at all large, and this is serious from 
the experimental point of view. If only one experiment were performed then the 
mean-square error might reasonably be taken as the criterion of the "best" estimate. 
However, this is virtually never the case. The experiment is almost always repeated 
several times. This being so it is arguable that large bias will usually be a far more 
serious defect in an estimation method than large variance, since only the latter can be 
detected and reduced by repetition of the experiment. 

The least-squares methods can also produce estimates of Vand K that tend towards 
infinity. This will occur when the experimental points are best fitted by a straight line 
which is characterized by infinite values of V and K. This would be expected to occur 
most frequently by chance when the error is large and increasing with Y (models (4) 
and (6)) and it is in just these cases that a substantial number of absurdly large estimates 
were found. Iflarger values of x had been included in the model it would be less likely 
that the observations would appear to lie on a straight line so presumably absurdly 
large estimates would be rarer. 

Whatever method of estimation is used, a high positive correlation is found between 
the estimates of V and K so that if the estimate of one of them is too large it is very 
likely that the estimate of the other will also be too large. 
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