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Chapter 20 

A Q-Matrix Cookbook 
How to Write Only One Program to Calculate the 
Single-Channel and Macroscopic Predictions for Any 
Kinetic Mechanism 

DAVID COLQUHOUN and ALAN G. HAWKES 

1. Introduction 

It is clear from the examples in Chapter 18 (this volume) that the algebra involved in kinetic 
arguments can be quite lengthy, even for simple mechanisms with only three states. For 
more complex mechanisms it becomes rapidly worse. Furthermore, this complicated algebra 
would have to be carried out separately for every kinetic mechanism that was of interest. 
On the other hand, the use of matrix notation allows perfectly general solutions to be written 
down. Not only are the results general, but they are also compact and simple-looking. They 
do not result in pages of complicated-looking algebra. For example, once a solution has been 
obtained for a quantity such as the distribution of the burst length, this result can be applied 
to any kinetic mechanism that is postulated. There is no need for further algebra (or for 
further programming) when a new mechanism is considered. With a general computer 
program, all that is needed is to supply the program with a definition of the states and the 
values of the transition rates for the mechanism you wish to study. 

Chapter 18 (this volume) includes a brief introduction to matrix-based theory. More 
comprehensive treatments are given, for example, by Colquhoun and Hawkes (1982). The 
paper by Colquhoun and Hawkes (1981) contains some explicit algebraic examples for 
common mechanisms, but this paper should not be consulted for the underlying theory, which 
is dealt with more elegantly in the 1982 paper. 

The purpose of this chapter is to provide a guide to programming the sort of general 
matrix results needed, so that you can obtain numerical predictions from them. It is intended 
as a practical 'cookbook' guide rather than an explanation of the underlying theory. We 
consider a number of examples based on one particular mechanism. Although these do not 
exhaust all the possible things you can do, they exhibit the usefulness of the approach, and 
the computational elements needed are readily adapted to other situations. 

Note to the reader: At the author's request this chapter will use British spelling and the abbreviations ms 
and f..LS instead of msec and f..Lsec. 
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6BT, England. ALAN G. HAWKES • European Business Management School, University of Wales 
Swansea, Swansea SA2 8PP, Wales. 
Single-Channel Recording, Second Edition, edited by Bert Sakmann and Erwin Neher. Plenum Press, New 
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Within the body of this chapter we assume that the reader is familiar with the basic 
notation and operations of matrix algebra such as addition, subtraction, and multiplication 
of matrices, and the determinant of a square matrix; the fourth basic operation, division, is 
known as matrix inversion, the inverse (if it exists) of a matrix A being denoted by A-I. 
These basic operations are described briefly in the Appendix. If you are not familiar with 
the basic operations, please read the Appendix before proceeding further. 

Modem computer libraries have excellent routines for matrix manipulation, so it is not 
too hard to write an entirely general program to produce numerical results for any specified 
mechanism. For example there are the widely available NAG routines in FORTRAN and PASCAL, 

similar routines in the packages UNPACK and EISPACK, and very good matrix algebra facilities 
within the languages/packages such as APL, GENSTAT, SPLUS, and MATLAB and the computer 
algebra packages such as MAPLE, MATHEMATICA, MACSYMA, REDUCE, and DERIVE. General 
computational guidance and some code can be found in the invaluable book, Numerical 
Recipes, by Press et al. (1993). 

Because of all this variety, we do not, in general, give detailed computer code in any 
language, except a few simple examples in languages that are particularly appropriate for 
this kind of work but that may be less well known. We concentrate instead on discussing 
the principles involved in one or two of the trickier parts and give numerical examples 
against which others can check the results obtained from their own programs. 

Numerical Solutions and Explicit Solutions 

One virtue of writing out the algebra the hard way is that one can see every term in 
the equations, and therefore one may be able (if the results are not too complex) to get a 
feeling for how the equations work, e.g., which are the important bits of the equation, and 
which bits can be neglected. On the other hand, if it gets complex, one may get easily 
confused and make mistakes. 

At the other extreme, it is sometimes possible to solve the equations numerically without 
solving them algebraically at all. For example, the macroscopic behaviour of a kinetic system 
is described by a set of linear first-order differential equations, and standard algorithms exist 
in all computer libraries (e.g., the Runge-Kutta method) for producing the numerical solution 
of such sets of equations, given values for the rate constants, etc. The solution comes out 
as a set of numbers, e.g., the fraction of open channels at each of a set of specified times. 
Not much work is needed to get the results, but, on the other hand, the results have no 
generality. Thus, if the value of a rate constant or concentration is changed, the whole 
calculation must be done again. 

In some cases, this sort of numerical solution is all that is possible. For example, if the 
ligand concentration is varying with time (as during a synaptic current), then the coefficients 
of the differential equations are not constant, and explicit solutions are usually not possible. 
If, however, the coefficients are constant (e.g., concentrations and membrane potential are 
constant throughout), then solutions to most problems can be found in the form of a sum of 
exponential terms. Once this has been done, values can be calculated at any time point with 
little further effort, and, moreover, the time constants involved in these expressions may be 
interpreted physically. The problem is that the algebraic expressions for these time constants, 
and for the coefficients of the exponential terms, are very complicated except in the simplest 
cases. In mechanisms with three distinct states, for example, the time constants must be 
found as the solution of a quadratic equation (illustrated in Chapter 18). With four states the 
time constants are the solutions of a cubic equation. Although a cubic equation can, like a 
quadratic, be solved explicitly, the results are even more untidy. 
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With more states than four, the higher-degree polynomials that must be solved for the 
time constants are not generally solvable in an explicit form. This fact blurs the distinction 
between numerical and explicit results. The use of matrix notation allows explicit solutions, 
in the form of sums of exponential terms, to be written compactly and elegantly. But, in 
order to calculate numbers from these 'explicit' results, it will usually be most convenient 
(though not necessary) to evaluate the time constants of the exponentials. This process 
involves solving a polynomial equation for the time constants, as just described, a process 
that is known, in matrix jargon, as finding the eigenvalues of a matrix, as explained below. 
This polynomial, if higher order than a cubic, will have to be solved by some sort of numerical 
method (routines for doing this are available in all computer matrix libraries, so you do not 
have to do this yourself). This does mean, though, that even explicit solutions will involve 
numerical steps when one wishes to calculate values from them. 

2. Basic Notation and a Particular Mechanism 

In this section we introduce the basic notation we will use and exemplify it by a particular 
mechanism that we will use throughout the chapter to give some numerical examples (see 
also the final section in Chapter 18, this volume). Further notation will be introduced as 
needed for calculating particular quantities. In general, an ion channel can be considered at 
any time to be in one of k physical states, which we will label by the integers 1 to k, and 
the dynamics are governed by the transition rates qij' which here are interpreted as giving 
rise to probabilities as follows: if the channel is in state i at time t then, for a small time 
increment 8t, 

P[channel moves to statej during the time interval (t, t+8t)] =- q ij 8t (1) 

where == means 'approximately equal to'. More precisely, qjj is the limit as 8t tends to zero 
of the ratio of the above probability and the increment 8t (see Chapter 18, this volume, 
Section 1.2). Clearly, this definition makes sense only when i and j are different (i.e., i *" 
j). The matrix Q is a square array of values with k rows and k columns. The entry in the 
ith row and jth column of this array is qij' and the value (for i *" j) is usually simply the 
rate constant for transitions between states (these transition rates all have dimensions of 
reciprocal time, so association rate constants must be multiplied by the ligand concentration, 
as discussed in Chapter 18 (this volume), to obtain the transition rate). Thus equation 1 is 
the microscopic probabilistic manifestation of the law of mass action. This defines all the 
entries in Q except for those along its diagonal (i.e., the values for i = J)' These diagonal 
elements qu are then chosen so that the sum of the values in each row is zero; thus, qu is 
negative, and -qji represents the total rate at which the channel leaves state i, or -llqu is 
the average duration of a sojourn in state i. 

In order to relate the algebra to the experimentally observed channel behaviour, the 
next step is to classify the k states according to their observable characteristics. The simplest 
classification is into open states and shut states, and we will use the symbol s4. to denote 
the index set of the open states and cg; to denote the set of shut states (examples are given 
below). If we are interested in burst characteristics, it will be useful to subclassify the shut 
states as being 'brief' or 'long'. The brief shut states are those that have short lifetimes on 
average and can be associated with short shut times within a burst; the index set of these 
will be denoted by rA. The remaining 'long' shut states, associated with long gaps between 
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bursts, will be denoted by '€. Then f!f = ~U,€, the union of the two sets; i.e., all shut states 
are classified as either brief or long. It is convenient to number the states so that .54. contains 
the smallest index numbers, '€ the largest and ~ the intermediate values. Let the numbers 
of states in each group be denoted klA' ~, and~; then k/A. + ~ + ~ = k. 

2.1. A Five-State Mechanism 

All the illustrations in this chapter are done with respect to the five-state mechanism 
shown in equation 110 of Chapter 18 (this volume) and reproduced in equation 2. There are 
k/A. = 2 open states, which are numbered 1 and 2 in equation 2, so the set of open states is 
.54. = {1,2}. 

State State 
number number 

S R 

k- t 1l 2k+t 

4 AR~ AR* 1 (2) 

2k-,1l ~k!'l k!, 
3 A2R~ A2R* 2 

(X2 

We suppose that the two states for which agonist molecules are bound, but the channel 
is shut, are both short-lived, so we number them as states 3 and 4 and classify them as ~ 
states; i.e., we take ~ = {3,4}, with ~ = 2. It should be noticed at this point that, since 
we wish to identify brief observed shut times with sojourns in this set of states, it is actually 
not good enough to say that the lifetimes of states 3 and 4 are both (on average) brief; we 
actually require that a sojourn within subset ~ should be (on average) brief. The latter does 
not necessarily follow from the former because, if the rate constants were such that there 
were many 3 ++ 4 transitions before ~ was left, it is possible that a long time could be spent 
within ~ even though states 3 and 4 were both short-lived. Finally the set'€ = {S} consists 
of the single shut state, ~ = I, in which no agonist molecules are bound to the channel 
receptors. This is supposed to have a long lifetime; this will, of course, be true only when 
the agonist concentration is low, so the calculations refer only to this condition. 

The transition rate from state 3 to state 4 is labeled, on diagram 2, as 2k_2 rather than 
L 2• This is because two agonist molecules are bound to state 3, and one or the other must 
dissociate to make a transition to state 4. If the dissociation rate constant for a single 
agonist-receptor complex is k-2' and if the two bound molecules both behave in the same 
way, the fact that either may dissociate makes the total transition rate 2k-z. The rate for a 
single site, L 2, is known as a microscopic rate constant, whereas the net transition rate, 
2k_2' is a macroscopic rate constant. Similar remarks apply to the 2 ~ 1 transition and to 
the S -+ 4 transition. We shall use microscopic rate constarits here because they are the 
most fundamental physical quantities (but remember the implicit assumption of equivalent 
binding sites). 
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2.2. The Q Matrix 

The general Q matrix for this mechanism is shown in equation 127 of Chapter 18 (this 
volume). As in Colquhoun and Hawkes (1982), we take for our calculations the particular values 
\31 = 15 s-I,\32 = 15,000 S-I, a.1 = 3000 S-I, a.2 = 500 S-I, k_1 = k-2 = 2000 S-I, k+1 = 5 X 
107 M-I S-I, k+2 = kt2 = 5 X 108 M-IS-I. Then the principle of microscopic reversibility 
implies that we must also have k!.2 = (1I3)S-1 (see Chapter 18, this volume, Section 7). 
Finally, we take the agonist concentration to be XA = 100 nM; thus, for example, QS4 = 
2k+ 1XA = 2 X (5 X 107 M-1s- 1) X (100 X 10-9 M) = 10 S-I, as shown in row 5, column 
4 of Q, below. When these values are substituted into the general forms given in equation 
127 of Chapter 18 (this volume), we get the Q matrix: 

-3050 50 0 3000 0 
0.666667 -500.666667 500 0 0 

Q= 
0 15000 -19000 4000 0 (3) 

15 0 50 -2065 2000 
0 0 0 10 -10 

Alternatively, it may be more convenient to work on a millisecond time scale, in which case 
we multiply the above transition rates by 10-3 giving, in ms -I, 

,... 
0 

-
-3.050 0.05 0 3 

0.000666667 -0.500666667 0.5 0 0 

Q= 0 15 -19 4 0 (4) 
0.015 0 0.05 -2.065 2 

I- 0 0 0 0.01 -0.01 _ 

This has also an advantage in having entries closer in value to 1 than the previous version 
of Q, as some matrix routines can become numerically unstable if the entries are too large 
or too small. This is the example we will work with. The element q21 is actually (2/3) X 
10-3; again, because of numerical sensitivity of some matrix operations, one should make 
this reasonably accurate, and we have expressed it as a decimal to six significant figures. 

The matrix in equation 3 has been partitioned into blocks, indicated by the horizontal 
and vertical hairlines; these divisions correspond to the division of states into the open states 
(set ,yg,) and the shut states (set ~). The matrix in equation 4 has also been partitioned into 
blocks, the divisions in this case correspond to the division of states into the sets ,yg" 00, and 
«6. This is an example of the general partition of Q into the forms 

(5) 

where, for example, Q.9f1Ya indicates a sub matrix of the matrix Q obtained by selecting the 
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rows belonging to the index set s1. (in this case 1,2) and the columns belonging to the index 
set 00 (in this case 3,4, so <!.t~ has two rows and two columns). Thus, from equation 4 we 
have in the present case 

(6) 

The use of submatrices of this sort is very common in all calculations that concern 
single-channel properties. In contrast, calculations concerning the average properties of a 
large number of channels (Le., relaxation or noise analysis) use the whole Q matrix as it 
stands, as illustrated in Section 4 below. The fact that single-channel observations allow use 
of a smaller matrix is one way of viewing the reason single channels can provide simpler 
and more direct inferences than macroscopic observations. 

In computer programs for the evaluation of single-channel models, it is, therefore, very 
commonly required to find a submatrix of Q, i.e., in the example above, to move the values 
in rows 1,2 and columns 3,4 as in equation 4 into rows 1,2 and columns 1,2, as in equation 
6. It is easy to write a subroutine in any language that will move the elements in any specified 
rows and columns into the top left-hand comer in this way. Some languages make this very 
simple. For example, the computer language APL has very good array-handling properties, 
and one example is that if one assigns, say, A+--1 2 and B+--3 4, then the expression Q[A;B] 
is equivalent to Q",ga. 

3. Equilibrium State Occupancies 

The fraction of molecules in each state at eqUilibrium can be obtained from explicit 
algebraic expressions, which are not difficult to obtain even for complex mechanisms. How
ever, it is very convenient to have them evaluated by the same computer program that does 
the subsequent, more complex, kinetic calculations. Evaluation of equilibrium occupancies 
from the Q matrix directly raises some problems that may not be obvious, so this problem 
will be discussed next. 

We shall denote the occupancy of state i at time t as p,{t). Let p(t) be a row vector with 
k elements (a 1 X k matrix; see Appendix) that contains these occupancies for each of the 
k, states. 

(7) 

where pj(t) is the probability that the channel is in state i at time t. The corresponding vector 
of derivatives is 

dp(t) = [dpl(t) dp2(t) . .• dpk(t)] 
dt dt dt dt 

With this notation, the kinetic equations that describe the system can be written as 

dp(t) _ ()Q ---pt 
dt 

(8) 

(9) 
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This result follows directly from the law of mass action, which describes the rate of change 
of the concentration of each reactant (or, equivalently, of the fraction of the system in each 
state). The result can easily be verified for particular examples by multiplying out the right
hand side. Note, though, that matrix notation has allowed us to write an equation, equation 
9, that is correct for any mechanism, however complex and with any number of states. 

The term steady state means that these occupancies (probabilities) do not change with 
time, and so the derivatives are zero. In the absence of an energy input, the existence of 
steady state means that the system is at eqUilibrium (see Chapter 18, this volume, Section 
7). After sufficient time (t --+ 00), eqUilibrium will be reached, and the eqUilibrium occupancy 
of state i is denotedpj(oo). These equilibrium values are in the equilibrium vector ofprobabili
ties p(oo), which, from equation 9, satisfies the equation 

0= p(oo)Q (10) 

subject to Ipj(oo) = 1, because the total probability (or total occupancy) must be 1. Here, 
the symbol 0 represents a matrix with elements that are all zeros. [Mathematical note: for 
ergodic mechanisms, and this will include all reversible mechanisms with at most one closed 
set of states (i.e., a set that the channel cannot get out of), p(t) will tend to a unique limit 
vector p(oo) as t --+ 00, independently of initial conditions, and this will be the same as 
the eqUilibrium vector p above. In these circumstances the above equation will have a 
unique solution.] 

Several systematic methods for obtaining the steady-state distribution for any mechanism 
are available (all, of course, are just standard methods for solving simultaneous equations). 

3.1. The Determinant Method 

The best-known method is, perhaps, that based on the use of determinants (e.g., Huang, 
1979; Colquhoun and Hawkes, 1987). The Appendix gives a brief definition of a determinant, 
and all matrix program libraries contain routines for calculation of determinants, so it will 
never be necessary to program this oneself. The procedure is as follows. To find the value 
for pj(oo), cross out the ith row and the jth column of Q. Then calculate the determinant of 
the matrix that remains (which now has k - 1 rows and k - 1 columns). Call this determinant 
dj. Then pj(oo) can be calculated as dj divided by the sum of all k values of d. In general 

3.2. The Matrix Method 

k 

pj(oo) = d;l ~ dj 

j=l 

(11) 

In order to obtain numerical results from a computer program, it is generally more 
convenient to use matrix methods than to use determinants. This is, however, not quite as 
straightforward as it seems, essentially because the number of unknowns is one less than 
the number of equations, so one equation is superfluous. This is reflected in the fact that Q 
has a determinant of zero (because the rows each add up to 0) and so cannot be inverted 
(see Appendix). There are two ways around this problem. One is to define a modified 
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(reduced) Q matrix that has only k - 1 rows and columns rather than k (where k is the 
number of states in which the system can exist). This gets rid of the superfluity and thus 
allows a straightforward solution. The other, and perhaps more straightforward. solution is 
to use a trick (described below) to solve the equations directly. Both methods will be described. 

3.2.1. The Reduced Q-Matrix Method 

The procedure is to subtract the elements in the bottom row of Q from each of the 
other rows and to omit the last column. Thus, if we denote the reduced Q matrix as R, with 
elements rjj' then 

rij = qjj - qkj for 1:;;; i. j:;;; k - 1 (12) 

Thus. for the Q matrix in equation 4, the reduced version would be 

[ 

- 3.050 0.05 0 2.99] 
R _ 0.000666667 -0.500666667 0.5 -0.01 

- 0 15 -19 3.99 
0.015 0 0.05 -2.075 

(13) 

Define also a reduced version of the row vector that contains the equilibrium probabilities, 
with the last value, Pk(oo). omitted. The last value can be found at the end from the fact that 
the probabilities must add to 1. Call this vector 

Finally. define a row vector, r = [qkl qk2." qu- .1, that contains the first k - 1 elements 
of the bottom row of Q. In this example, from equation 4, we have 

r = [0 0 0 0.01] (14) 

The equations p(oo)Q = 0 imply p(oo)'R + r = O. Because R, unlike Q, can be inverted 
(it is not singular). the solution can be written as 

p(oo)' = -rR-l (15) 

All computer matrix libraries contain procedures for matrix inversion so it is not necessary 
to program this operation oneself (indeed is is not desirable, because enormous specialist 
effort has gone into writing algorithms that will give numerically accurate results). 

3.2.2. Solution of p(oo)Q = 0 Directly 

This can be done by adding a unit column (all values are 1) on to the right-hand end 
of Q to produce a matrix with k rows and k + 1 columns. Call this matrix S. Also define 
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a row vector, u say, containing k values all equal to 1. For example, from the Q matrix in 
equation 4, let u = [1 1 1 1 1] and 

-3.050 0.05 0 3 0 1 
0.000666667 -0.500666667 0.5 0 0 1 

S= 0 15 -19 4 0 1 (16) 
0.015 0 0.05 -2.065 2 1 

0 0 0 0.01 -0.01 1 

The solution for the equilibrium occupancies can then be found, for any mechanism, as 

p(oo) = U(SS'f)-l (17) 

In this result, ST represents the transpose of S (see Appendix), so SST is a matrix with k 
rows and k columns, but, unlike Q, it is not singular so it can be inverted to get the required 
solution. Hawkes and Sykes (1990) discuss this solution and show that in APL it is computed 
remarkably simply (see Appendix 1). 

With any of these three methods, the solution for our example matrix (equation 4) is, 
to four significant figures, 

p(oo) = (0.00002483 0.001862 0.00006207 0.004965 0.9931). (18) 

Under these conditions the channel is shut most of the time; it is open only 0.189% of the 
time, and for 99.3% of the time it is in the unoccupied state (state 5). 

4. Relaxation to Equilibrium 

4.1. General Solutions for the Rate of Approach to Equilibrium 

In any problem that involves the average behaviour of a large number of channels, the 
problem is to find how occupancies change with time. This description encompasses all 
macroscopic voltage-jump and concentration-jump experiments, for example. The problem, 
then, is to solve equation 9 for p(t); this vector contains the occupancy of each state at time 
t. We expect, under the conditions mentioned at the start, that the time course of these 
occupancies will be described by the sum of k - 1 exponential terms (Colquhoun and 
Hawkes, 1977). 

4.1.1. Initial Occupancies at Equilibrium 

The aim, in a jump experiment, is to keep the membrane potential and ligand concentra
tions constant at all times (except for the actual moment of the jump). The approach to 
eqUilibrium after a jump should therefore be dictated by the Q matrix calculated for the 
conditions (the potential and concentrations) that exist after the jump. In order to calculate 
this time course, we need to know the occupancy of each state at the moment (t = 0, say) 
when the jump was applied, i.e., the initial occupancies, p(O). If the system was at equilibrium 
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before the jump was imposed, then these initial occupancies will simply be the equilibrium 
occupancies, calculated as described in Section 3 from the Q matrix that describes the 
conditions before the jump. 

4.1.2. Initial Occupancies Not at Equilibrium 

In a more complex case we might wish to calculate the time course of the response to 
a brief pulse of membrane potential or concentration. This will involve two separate calcula
tions, one for the onset of the response from the moment (t = 0) that the pulse starts and 
another for the 'offset' of the response after the pulse ends. In this case it is reasonable to 
suppose that the system has equilibrated before the pulse is applied, so the initial occupancies 
for calculating the onset of the response can be found as above. However, if the pulse is 
brief (duration tp say), there will not be time for the system to come to equilibrium before 
the end of the pulse. The initial occupancies for calculating the 'offset' time course will 
simply be the occupancies, p(tp), that were found from the onset calculation to obtain at the 
moment t = tp when the pulse ends, and the calculation can then be completed using the Q 
matrix appropriate to the conditions after the end of the pulse. 

Formally, the solution of differential equation 9 is just 

p(t) = p(O)eQI (19) 

where p(O) contains the occupancy probabilities at t = O. This result, despite being completely 
general for any mechanism. looks no more complicated than its scalar (nonmatrix) equivalent, 
which would describe only the simplest two-state shut ++ open reaction. This astonishingly 
simple result is, in a sense, all that there is to be said about calculating the time course on 
the basis of some specified reaction scheme. Needless to say, though, there is a bit more to 
be said. In particular. it may not be at all obvious what eQI means. In this expression, e 
represents the usual (scalar) constant (2.71828 ... , the base of natural logarithms), but the 
exponent Qt is a matrix! The exponential of a matrix is an unfamiliar object even to 
many mathematicians. It is to some extent reassuring to find that it is defined by the usual 
power series 

(20) 

where I is the identity matrix (see Appendix), with matrices and their powers replacing the 
usual scalar terms with which we are familiar. It is immediately clear from this that, since 
Q is a k X k matrix, eQ1 is itself also a k X k matrix. The (infinite) series in equation 20 
involves nothing more complex than multiplying and adding matrices, so it can easily be 
evaluated, stopping after a finite number of terms of course. However, use of this expansion, 
though sometimes satisfactory, is not generally the fastest or the most accurate way of 
evaluating the exponential numerically. Furthermore. its use does not generate the k - 1 
exponential components that an experienced experimenter expects to see. 

4.2. Evaluation of p(t) as a Sum of Exponential Components 

The trick needed to accomplish this is a beautifully elegant technique called the spectral 
expansion of a matrix. This is critical to most of the results in this chapter, and the problem 
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is therefore looked at in more detail in Section 9. For the moment, we merely state that eQt 

can be written in the form 

k 

eQt = 2: Ai exp( - Ai t ), 
;=1 

(21) 

where Ai are eigenvalues of the matrix -Q, k in number (equal to the number of states), 
and the Ai are a set of square matrices derived from Q and known as the spectral matrices 
of Q. How these quantities are obtained from Q will be discussed in Section 9, below. Given 
this relationship, our solution can be written in the form 

k 

pet) = p(O)eQt = p(O) 2: A; exp( - Ai t ) 
;=1 

(22) 

We now have the exponentials in the familiar scalar form. However there are k terms, 
but we are expecting only k - 1 exponentials. The explanation of this is that Q is singular, 
so that one of the eigenvalues, say A I, is zero; thus, exp( - A I t) = exp(O) = 1, regardless of 
t. The other eigenvalues can all be shown to be real and positive, so that exp( - A,t) tends to 
zero as t ~ 00 for all eigenvalues except AI. Thus, the limit, letting t ~ 00, of the above 
equation shows that 

p(oo) = p(O)AI (23) 

and so 

k 

pet) = p(oo) + p(O) 2: A; exp( - Ait) 
;=2 

or, in terms of time constants, 

k 

pet) = p(oo) + p(O) 2: Ai exp( -tIT;) (24) 
i=2 

where T; = l/A; is the time constant of the ith component. The approach to the equilibrium 
is thus a mixture of k - 1 exponential components. Notice that the same set of k - 1 time 
constants describe the time course of change for all the states; all that differs from one state 
to another is the amplitude of the components, i.e., the size (and sign) of the coefficients 
that multiply each exponential term. 

4.3. Expressing the Coefficients as Scalars 

In the result in equation 24, the exponential terms exp( -tIT;) are ordinary scalars, but 
the coefficients of these exponential terms are still in matrix form. Both sides of equation 
24 are I X k matrices (vectors), the ith entry being p;(t). The last term, with the summation 
sign, involves the products of p(O), which is 1 X k, with Ai, which is k X k, and this product 
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is I X k. If the matrices on the right-hand side are multiplied out, the result can be put into 
an entirely scalar form. Thus, the time course of the occupancy of the jth state, Pj(t), can be 
written as 

(25) 

where Wij (i = 2, 3, ... , k) are the k - I coefficients that define the amplitudes of the 
components for the jth state (Wij is the coefficient for the component with time constant Ti)' 

The result in equation 25 can be written more compactly as 

i=k 

Pj(t) = Pj(oo) + L wije- tllTi 

i=2 

These coefficients are given by 

r=k 

wij = L Pr(O)a~] 
r=1 

(26) 

(27) 

where a~} denotes the value in the rth row andjth column of Ai' Thus, once the Ai and the 
A j have been found (see below), the occupancy of any state at any time can easily be calculated. 

4.4. The Current through a Channel 

Calculations of the sort outlined above will most commonly be aimed at calculating an 
observable quantity such as the time course of the current through ion channels. There may, 
in general, be more than one open state through which current can pass: in the notation 
introduced earlier there are k~ open states. These states may not all have the same conductance. 
Thus, if 'Yi is the conductance of the ith open state, the expected current at time t, for one 
channel, will be 

i.e., just add up the probabilities of all the open states, each multiplied by the appropriate 
conductance, and then multiply that sum by the effective voltage across the membrane (the 
difference between the membrane potential, V, and the reversal potential, V feVt at which no 
current flows). In macroscopic studies there are typically many channels, N say, so the 
observed current should be N times the above expected current. Using equation 24 we get, 
in scalar form, the current as the sum of k - I exponential terms, 

k 

/(t) = /(00) + L bi exp( -tITi), (28) 
i=2 

where the (scalar) coefficients of each exponential are 

(29) 
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In this result the column vector v has k elements of which the fIrst k .. are the conductances 
'Y/o and the rest are zeroes (the conductance of the shut states). Multiplying by this is equivalent 
to adding the probabilities as described above. Multiplying out the matrices in equation 29 
shows that the coefficients can be expressed entirely in terms of scalar quantities, thus: 

r=k ]=kJ4 

bi = N(V - Vrev) ~ ~ Pr(O)'YjaW (30) 
r=1 ]=1 

Without the factor N. equations 28-30 also give the time course of the current you 
would expect to see if you averaged several repetitions of the step experiment with a single 
channel (see Chapter 18, this volume). 

4.5. Numerical Results 

Using the methods discussed in Section 9, we fInd the eigenvalues of -Q are 

and these correspond to time constants Ti = lIAi (apart from the case Al = 0) of 

{

T2 = 9.821 ms 
T3 = 0.4945 ms 
T4 = 0.3233 ms 
TS = 51.52 tJ.s 

The k spectral matrices are as follows: 

0.00002483 0.001862 0.00006207 0.004965 0.9931 
0.00002483 0.001862 0.00006207 0.004965 0.9931 

A1 = 0.00002483 0.001862 0.00006207 0.004965 0.9931 
0.00002483 0.001862 0.00006207 0.004965 0.9931 
0.00002483 0.001862 0.00006207 0.004965 0.9931 

1.670E-5 0.03497 0.0009297 0.001728 
4.662E-4 0.9763 0.02596 0.04825 

A2 = 3.719E-4 0.7787 0.0207 0.03848 
8.64lE-6 0.01809 0.0004811 0.0008941 

-9.4l1E-7 -0.001971 -0.00005239 -0.00009738 

-0.03764 
-1.051 
-0.8383 
-0.01948 
0.002121 

(31) 

(32) 
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0.04051 -0.06356 0.006321 2.779 -2.762 
-0.0008475 0.00133 -0.000132 -0.05813 0.05778 

A3 = 0.002525 -0.003961 0.0003934 0.1732 -0.1721 
0.01389 -0.0218 0.002165 0.9531 -0.9473 

-0.00006905 0.0001083 -0.00001076 -0.004737 0.004708 

0.9594 0.0272 -7.9E-3 -2.785 1.807 
0.0003627 0.00001028 -2.987E-6 -0.001053 0.000683 

A4 = -0.00316 -0.0000896 2.602E-5 0.0009174 -0.00595 
-0.01393 -0.0003949 1.147E-4 0.04043 -0.02622 

0.00004517 0.000001281 -3.719E-7 -0.0001311 0.00008504 

1.455E-7 -0.0004734 0.0005968 -1.377E-4 1.419E-5 
-6.312E-6 0.02053 -0.02588 5.971E-3 -6. 157E-4 

As = 2.387E-4 -0.7765 0.9788 -2.258E-l 2.328E-2 (33) 
-6.883E-7 0.002239 -0.002823 6.512E-4 -6.714E-5 
3.548E-1O -0.000001154 0.000001455 -3.357E-7 3.46IE-8 

Note that every row of the matrix AI is the same as the equilibrium vector shown in equation 
18, so its columns consist of identical numbers. This is why we get this limit as t ~ 00 

regardless of the initial probability vector p(O). 
There are just two open states, with conductances "VI and "V2 say, so we have 

"VI 
"V2 

v= 0 
o 
o 

4.6. Example of a Concentration Jump 

(34) 

Suppose the membrane potential is V = -100 mY, with a reversal potential Vrev = 0 
mY, and that the conductances of the two open states are "VI = 40 pS and "V2 = 50 pS. There 
was zero drug concentration before time t = 0, so, at equilibrium, all channels are in the 
unoccupied shut state (state 5). The initial vector is therefore 

p(O) = (0 0 0 0 1) 

At t = 0, the concentration is suddenly increased to 100 nM (the concentration used to 
calculate the Q matrix in equation 4 and its eigenvalues and spectral matrices in equations 
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31-33. The current will then rise from /(0) = 0 at t = 0 toward its equilibrium value for 
an agonist concentration of 100 nM. For N = 1 channel, this is 

/(00) = (V - Vrev)["YIPl(oo) + "Y2P2(00)] 

= -9.4095 X 10-3 pA 

The current will follow a time course described by the sum of four exponential tenns, as in 
equation 28, with time constants as specified in equation 32. The coefficients, bi' for each 
of these tenns can be calculated by equation 29 or 30, and the values (in picoamperes) are 
b2 = 9.8563 X 10-3 pA, b3 = -0.2655 X 10-3 pA, b4 = -0.1871 X 10-3 pA, and bs = 
0.005770 X 10-3 pA. By far the largest component is the second, that with T2 = 9.821 ms 
(its amplitude, b2, is 37 times greater than that of the next largest component), so the relaxation 
is quite close to being a single exponential with this time constant. Notice that the sum of 
the four bj values comes to +9.409 X 10-3 pA, thus ensuring that the current at t = 0 is 
indeed zero. 

5. Distribution of Open Times and Shut Times 

The theory enabling prediction of the distributions of open times and shut times in a 
single channel record is described in some detail in Colquhoun and Hawkes (1982). We will 
not go into the theory here but merely quote results (the fonn CH82 followed by a number 
will be used to refer to equations from that paper) and comment on computational aspects. 

5.1. Distribution of Open Times 

The distribution of all open times is given by (CH82-3.64) as 

(35) 

The beauty of this result is that, despite being quite general, it looks (apart from an initial 
and final vector) very much like the simple exponential distribution,!(t) = A exp( - At), with 
- Q.1d.54 in place of A. In equation 35, ~o is a row vector (1 X kaf) containing the probabilities 
of starting an open time in each of the kaf open states; Qafaf is a kaf X kaf matrix, the subsection 
of the Q matrix relating to the open states only (see Section 2), and Uaf is a column vector 
(kaf X 1) whose elements are all 1 (this has the effect of summing over the sa states-see 
Appendix I, equation A4). Thus, the result in equation 35 is scalar. To evaluate it we need 
only have routines to multiply matrices and a way of evaluating exp(Qafaft). The latter can 
be found in exactly the same way as used for finding exp(Qt), as outlined in Section 4 and 
specified in detail in Section 9. The only differences are that (1) this time we have a smaller 
matrix; i.e., from equation 4, 

Q [ -3.050 0.05] 
.Id.54 = 0.000666667 -0.500666667 

(36) 
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and (2) unlike Q, this time the matrix is unlikely to be singular, so none of the eigenvalues 
will be zero. In this example, the eigenvalues of -Qu are 

(37) 

so the time constants are 

TI = 1.99739 ms, T2 = 0.327867 ms 

The distribution of open times will have two (k",) exponential components with these time 
constants. To get the distribution in the form of a sum of (scalar) exponentials, we again, 
as in Section 4, use the spectral expansion trick. By direct analogy with equation 21, we 
can write 

kill 

exp(Qut) = I Al exp(-Ajt) (38) 
i=1 

where AI now represents the k!J4 spectral matrices (each k!J4 X k!J4) of -Qu, and Ai are the 
eigenvalues of -Qu, already given in equation 37. In the present example, the spectral 
matrices are 

[ 5.1288 X 10-6 0.019613J 
AI = 2.6150 X 10-4 0.999995 

[ 0.999995 -0.019613 J 
A2 = -2.6150 X 10-4 5.1288 X 10-6 • 

(39) 

To complete the calculation, we need to find the relative areas of these two components. 
In general, a mixture of exponential densities can be represented as 

(40) 

the sum running over the number of components (here i = 1 to k!J4)' Here al represents the 
area of the ith component (the total area being 1). From equations 35 and 38, the areas are 
given by 

(41) 

We now have everything needed to evaluate these areas, apart from the initial vector, <1»0' 
This is given (CH82-3.63) as 

(42) 

In this expression, ps;(oo) represents the part of the eqUilibrium occupancies found in equation 
18 for the shut states only. The eqUilibrium vector was 
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p(oo) = (0.00002483 0.001862 I 0.00006207 0.004965 0.9931) (43) 

but a vertical line has been added that partitions p(oo) into p",(oo) (the first two elements, for 
the open states) and p~(oo) (the last three elements for the shut states). Thus 

p~(oo) = (0.00006207 0.004965 0.9931) (44) 

and when this is postmultiplied by Q~"" which, from equation 4, is the k~ X k", matrix 

(45) 

the result is a 1 X k", vector that forms the numerator of ct»o in equation 42. The denominator, 
p~(oo)Q~",u"" is a simple scalar, the sum of the elements in the numerator, which ensures 
that the elements of ct»o add up to 1. When these are multiplied out, the result is 

ct»o = (0.07407 0.92593) (46) 

Thus, any individual opening has a 7.4% chance of starting in open state 1 and a 92.6% 
chance of starting in open state 2. The areas can now be found from equation 41 and come 
to at = 0.9276 and a2 = 0.07238. The final probability density function for open times, in 
the form given in equation 40, is therefore 

/(t) = 0.9276(111.997)e-tll .997 + 0.07238(1/0.3279)e-t/O.3219 (47) 

The slower component, TI = 1.99739 ms, predominates, having 92.8% of the area. 
When channel openings can be divided into bursts, there are many other open-time 

distributions of potential interest, e.g., the distribution of the first opening of a burst of 
openings or of all openings in bursts with one opening, etc. All of them have the basic form 
for the probability density: 

/(t) = ct» exp(Q"ut)c (48) 

where ct» is a suitable row vector containing the probabilities of starting an open time in 
each of the k", open states, and c is some appropriate column vector (expressions are given 
by Colquhoun and Hawkes, 1982, for various cases). They all involve exp(Q",,,,t), so they 
all have k,oA components with the same time constants as before. Only ct» and c, and hence 
the relative areas, differ from one sort of distribution to another. 

S.2. Distribution of Shut Times 

The distribution of all shut times can be found in exactly the same way as just described 
for open times. In fact, all that has to be done is to interchange .stl and rtf in the equations 
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already given. The distribution is thus 

(49) 

where the initial vector, which gives the probabilities that a shut period starts in each of the 
k'5 shut states, is 

(50) 

To complete the calculations, we need the 'shut' portion of the Q matrix; i.e., from equation 4, 

and 

with, from equation 43, 

[
-19 

Q'5'5 = 0.g5 

4 
-2.065 

0.01 

p,,(oo) = (0.00002483 0.001862) 

(51) 

(52) 

(53) 

The calculations proceed in exactly the same way as for open times. We find the k'5 
(=3 in this case) eigenvalues and spectral matrices for Q'5ff and use them to express the 
shut-time distribution in the form of kff exponential components, as in equation 40. The 
relative areas of the components are (cf. equation 41) 

(54) 

where the time constants, Th are now those for the shut-time distribution. The results are as 
follows. The eigenvalues of -Qrfff are 

Al = 0.263895 X 10-3 InS-I, 

the corresponding time constants, Tj = l/Aj, are 

TI = 3789.4 ms; T2 = 0.484747 ms; T3 = 52.5989 its. (55) 

The relative areas of these components, from equation 54, are 

al = 0.261946; a2 = 0.00836704; a3 = 0.729687 (56) 

Thus, most shut times are either very short, 52.6 fJ.s (73%), or very long, 3789 ms (26%). 
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The intermediate quantities needed to obtain the above areas are cl»s, given by equation 
50 and the spectral matrices Ai' The results are 

cl»s = [0.92593 0.07407 0] 

[
2.613E_6 9.931E-4 0.2040] 

Al = 1.241E-5 4.717E-3 0.9690 
1.275E-5 4.845E-3 0.9953 

[ 
6.934E-4 

A2 = 2.936E-3 
-1.430E-5 

[ 
0.9993 

A3 = -2.949E-3 
1.552E-6 

0.2349 
0.9946 

-4.845E-3 

-0.2359 
6.960E-4 

-3.663E-7 

-0.2288] 
-0.9689 
4.720E-3 

2.483E-2 ] 
-7.326E-5 
3.855E-8 

6. Distribution of the Number of Openings per Burst 

(57) 

(58) 

It is a very common observation that channel openings occur in bursts of several 
openings in quick succession rather than singly. This will be the case when, as in our example, 
the shut-time distribution contains some components that are very brief (short shuttings 
within a burst) and some that are very long (shut times between bursts). This is the case in 
our numerical example, as found in equations 55 and 56. 

A burst of openings must obviously contain at least one opening. In general, it may 
contain r openings separated by r - 1 brief shuttings, where r is random. For the present 
purposes we define a 'shut time within a burst' as a shut time spent entirely within the short
lived shut states, set ~. There are, in this case, ~ = 2 such states, states 3 and 4 (see 
equations 4-6). An entry into the long-lived shut state (state 5) will produce a 'shut time 
between bursts'. There is only one way out of state 5, with rate QS4 = 0.01 ms- I , so the 
mean lifetime of a single sojourn in state 5 is 110.01 = 100 ms. Notice that this is much 
shorter than the 3789-ms component of shut times; this is because the channel will oscillate 
several times between the shut states 5, 4, and 3 between one burst and the next and is likely 
to visit state 5 several times before the next opening occurs (i.e., before the next burst starts). 
A channel in state 4 is much more likely to return to state 5 (rate 2 ms- I ) than either to 
proceed to state 3 (rate = 0.05 ms- I ) or to open to state 1 (rate = 0.015 ms- I ). 

In order to analyze the burst structure we need two new matrices, denoted GstOO and 
G('I.Ist, which are defined as 

(59) 

The interpretation of GstOO is as follows. It is a kst X k'lll matrix, the i,j element (that in row 
i, columnj) of which gives the probability that an open channel, initially in state i (one of 
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the .s4 states), will eventually (after any number of transitions among the open states) arrive 
in statej, one of the short-lived shut states (set 00). G(M has an exactly analogous interpretation. 
The product G"'IIG!I.Il, which is a k", X k", matrix, thus describes routes from open states to 
brief shut states and back to open. This is just what happens during a burst of openings, so 
it is intuitively reasonable that the distribution of the number of openings per burst depends 
on this product. The distribution is, of course, discontinuous: the number of openings per 
burst (r) can take only the values 1, 2, 3, .... The probability, P(r), of observing r openings 
per burst is (CH82-3.5): 

(60) 

This is a geometric distribution (see also Chapters 18 and 19, this volume). As for the open 
time distribution, it starts with a 1 X k", vector, cl»b, which contains the k", probabilities that 
the first opening in a burst starts in each of the k", open states. These are not, in general, the 
same as the probabilities (in cl»o, see equations 42 and 46) for any opening. This 'start-of
burst' vector is (CH82-3.2) 

cl»b = prc(oo)(Q,€IIG(M + Qc..) 
P'€(oo)(Q'€IIG!I.Il + ~",)u", 

Taking cl»b first, we have in our example, from equation 43, 

P'€(oo) = 0.9931 

(61) 

(62) 

(there is only one long-lived shut state, ~ = 1, so this is a simple scalar, the eqUilibrium 
occupancy of state 5), and from equation 4 we have the various submatrices of Q needed 
to evaluate equations 59 and 61 as 

Qd = [0~5 ~J. [ 0 15J 
Q!I.Il = 0.D15 0 ' 

~11 = [0 0.01], ~'" = [0 0] 

and Q""", which has already been given in equation 36. Multiplying the matrices gives 

~ = (0.275362 0.724638) (63) 

Comparing this with cl»o, evaluated in equation 46, shows that the first opening of a burst 
has a greater probability (0.275) of starting in open state 1 than is the case for all openings 
(0.0741). This is clearly a result of the fact that, before the burst, the channel must have 
been in state 5, from which it must move to state 4, which communicates directly with state 
1. Conversely, once the burst has started, much of the time is spent oscillating between shut 
state 3 and open state 2, so many of these openings start in open state 2. 

Next, calculate G"'11 and ~ from equation 59. Inversion of Q",,,, gives 

Q_I = [-0.327876 -0.0327439J 
""" -4.36586 X 10-4 -1.99738 

(64) 
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so we find 

G - [0.016372 0.983628 J 
.l4~ - 0.998690 0.0013098 

Multiplication of these gives 

[ 0.0015371 0.793519J 
G~.l4 = 0.0073011 0.019214' 

[ 0.0072068 0.031890] 
G.l4~G~.l4 = 0.0015446 0.792504 

609 

(65) 

(66) 

We can now evaluate the distribution in equation 60 for any value of r. The value of 
(G.l4~G~.l4) raised to the power r - 1 can be calculated by repeatedly multiplying G.l4~G~.l4 
by itself the necessary number of times. 

However, once again, the spectral resolution trick proves useful. First, it provides a 
much quicker way of raising a matrix to a power than the obvious method of repeated 
multiplication. Second, it allows the distribution to be put in the scalar form of a mixture 
of simple geometric distributions (directly analogous with the exponentials in equations 40 
and 47). The matrix (G.l4~G~.l4)n can be expressed (see Appendix 1) in the form 

i=kst 

(G.l4~GOO.l4)" = :L Ai P7 
;=1 

(67) 

where Pi are the eigenvalues of G.l400Gru (they are not denoted A here because they are 
dimensionless rather than being rates), and A; are the spectral matrices of G.l4~G~.l4' found 
as before (see Section 9). This enables the distribution in equation 60 to be put into the 
entirely scalar form of a mixture of simple geometric distributions: 

i=kst 

P(r) = :L ai(1 - Pi)P~-1 (r = 1,2, ... ) (68) 
j=1 

where aj represents the area of each component. It can be seen that the ith component 
distribution has the form of a geometrically decaying series, the value of Pi (which is less 
than 1) being the factor by which P is reduced each time r is increased by 1. This is a 
discrete analogue of exponential decay, and the 'mean number of openings per burst' for 
each component (analogous with the time constant for exponentials) is 

(69) 

These results show that the areas of the components can be calculated as 

(70) 
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In our example, we find the eigenvaues of G",~G~", to be 

PI = 0.0071441 P2 = 0.792567 (71) 

and these, from equation 69, correspond to components with 

J.LI = 1.0072 J.L2 = 4.8208 (72) 

The spectral matrices of G",~G2ft..t are 

[ 0.999920 -0.040603 ] 
Al = -1.9666 X 10-3 7.9857 X 10-5 

[ 7.9857 X 10-5 0.040603] 
A2 = 1.9666 X 10-3 0.999920 (73) 

Thus, from equation 70, the areas of the two components are 

al = 0.262793 a2 = 0.737207 (74) 

In words, 73.7% of the area is accounted for by a component with a 'mean' of 4.82 openings 
per burst, but 26.3% of the area corresponds to a 'mean' of 1.007 openings per burst. There 
are more bursts that have only one opening than would be predicted from the former 
component alone. 

7. Distribution of Burst Length 

The total duration of a burst of openings is the sum of the durations of the r open times 
and r - 1 shut times that constitute the burst. The probability density of these burst lengths 
is given (CH82-3.17, 3.4) as 

(75) 

(see also Section 13.4 of Chapter 18, this volume). 
Once again, we need only to do some matrix multiplication, apart from finding the 

exponential of yet another matrix. This time we need to find exp«h"t), where ~ is the set 
of 'burst states' consisting of the open states, at, and the short shut states, 00. Thus, exp(~",t) 
is a Ie<" X Ie<" matrix, where"'" = k", + k~ (= 4 in our example), and the distribution will 
have k", time constants Ti = I/"-i where "-i are now the eigenvalues of -~"'. As before, we 
shall also need the "'" spectral matrices, Ai, of Q",,,, and these will each be of dimension k'f, 
X k",. However, equation 75 contains a bit of notation that has not occurred before. Although 
exp«h",t) is a Ie<" X k", matrix (4 X 4 in our case), the notation [exp(~",t)]",,,, means that 
we need only take the upper left k", X k", portion of it (the upper left 2 X 2 block in our 
case). This corresponds elegantly to the fact that a burst must both start and end in an open 
state and allows a general expression for a complicated quantity like the burst length to be 
written, in equation 75, in a form that is little more complicated than the distribution of 
open times. 

As usual, the spectral expansion trick allows the distribution to be written as a scalar 
mixture of "'" exponential components, as in equation 40. In this case, the areas of each 
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component are given by 

(76) 

The quantities cf>b, Gst~, G~st, etc. are all found as before. In our example, we have 

[ 

-3.050 0.05 0 3] 
Q = 0.000666667 -0.500666667 0.5 0 

'i£'i£ 0 15 -19 4 
O.oI5 0 0.05 -2.065 

(77) 

The eigenvalues of this are Al = 0.10160 ms- I, Az = 2.01260 ms- I, A3 = 3.0933 ms- I, 

and ~ = 19.408 ms- I , and the corresponding time constants are 

TI = 9.84244 ms T2 = 0.49687 ms T3 = 0.323283 ms T4 = 51.5246 j..Ls (78) 

This time, we shall not list all the spectral matrices, but the first one is 

1.8765 x 10-5 0.037102 9.8702 x 10-4 2.03952 x 10-3 

4.94699 x 10-4 0.978107 0.026020 0.053767 
Al=r---------------~r-------------------~ 

3.9481 x 10-4 0.780608 0.020766 0.042910 
(79) 

1.0198 x 10-5 0.020162 5.3638 x 10-4 1.1083 x 10-3 

In this matrix, the upper left hand kst X kst part has been marked by thin lines, so that part 
of Al to be used to calculate the areas in equation 76 is 

[ 1.8765 X 10-5 0.037102J 
(AI)stst = 4.94699 X 10-4 0.978107 

The areas, from equation 76, come out to be 

al = 0.73561 az = 0.01424 a3 = 0.25007 

(80) 

(81) 

Only the first and third components have sufficiently large areas to be detectable experimen
tally. 

7.1. Comparison with Relaxation 

The time constants for this burst length distribution (rather than those for open times) 
are very similar to those found in Section 4 (equation 32) for the macroscopic relaxation (at 
the same agonist concentration), the time course of which thus depends largely on the burst 
length. The predominant component in both has a time constant of 9.82 ms. All the other 
components were small (and so not likely to be detectable in an experiment) in the case of 
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the relaxation, and the same is true for components 2 and 4 in the burst length distribution, 
which have very small areas. However, the burst-length distribution gives information that 
could not have been found from the relaxation, because the component with 1"3 = 0.323283 ms 
has 25% of the area and therefore should be easily measurable in experiments. 

7.2. Total Open Time per Burst 

The distribution of the total open time per burst, expressions for which are given by 
Colquhoun and Hawkes (1982), is simpler than that for the burst length. Like the simple 
open time distribution, it has only ks4 components (two in our case), and these are quite 
similar to the two components with non-negligible area in the burst-length distribution just 
discussed. The similarity of the distributions is, of course, a result of the fact that most shut 
times within a burst are very short in this example, so their omission makes little difference. 

8. Channel Openings after a Jump 

The whole discussion so far has concerned channels at equilibrium. It is also possible 
to study channel openings following application of some perturbation such as voltage or 
concentration jump. Following the jump there will be a period, before a new equilibrium is 
established, when openings can be observed in nonequilibrium conditions. The necessary 
theory for calculating distributions from the Q matrix under such conditions has been given 
by Colquhoun and Hawkes (1987). In general, the time constants are still calculated from 
the subsections of Q, so they are the same as found at equilibrium. What differs are the 
relative areas associated with each time constant. 

A typical calculation of this sort would be to predict the probability distribution of the 
time to the first opening (the first latency) after the jump. In practice this can be a little 
tricky because, depending on the state of the system before and after the jump, some of the 
relevant submatrices become singular if the agonist concentration is zero. Furthermore, there 
may then be a nonzero chance of the channel failing ever to open at all. We will not, therefore 
give general results here. 

We give only a simple case for our example mechanism when there is no agonist present 
initially, so that the channel must start in state 5. If there is an instantaneous jump in agonist 
concentration to level XAt giving the general Q matrix of equation 4, then the time to first 
opening is simply a shut time starting from state 5. It therefore has a probability distribution 
that is found exactly as described in Section 5 for shut times, except that in this case the 
initial vector is taken as «fl. = (0 0 1), rather than using the equilibrium initial vector 
given in equation 50 and numerically in equation 57. The time constants are therefore exactly 
the same as in equation 55, the Aj are as given in equation 58, but with this new «fl. substituted 
into equation 54, we now have areas 

al = 1.000138 a2 = -0.0001392 a3 = 1.224 X 10-6 (82) 

Note that although these areas sum to 1 as usual, the second one is negative. It is easily 
verified that, with these values substituted into equation 40, the corresponding probability 
density function is zero at t = 0, rises to a maximum, and then decays back to zero. This 
occurs because the system starts in state 5 and must make a transition into state 4 before 
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there is any chance at all of an opening taking place. The density is depicted in Fig. la; on 
this time scale it is not easy to see exactly what is happening near t = 0, and the distribution 
is very nearly just a single exponential with mean 3789 ms but with just a little something 
funny at the origin. Figure Ib shows more clearly the behaviour at the origin; the density 
rises smoothly over the fIrst 2 ms and is then almost flat up to 5 ms before decaying as in 
Fig. la. 

9. Calculating the Exponential of a Matrix 

In the preceding sections we have seen that all that is needed to calculate a wide range 
of theoretical distributions for any mechanism is some straightforward matrix algebra and 
the ability to fInd the exponential of a matrix. In most cases one would want to do this via 
the spectral expansion, giving rise to mixed exponential (or geometric) functions, but we 
also discuss briefly a method that does not require this. 

9.1. Functions of a Matrix 

The central, and beautiful, result that underlies the tricks described above can be put 
in the following form. For any analytic function,/. and any n X n matrix M whose eigenvalues 
are distinct, the corresponding function of the matrix M, denoted f(M), can be written in 
the form 

i=n 

f(M) = L Ad(Ai) (83) 
i=l 

where the Ai are the eigenvalues of M and the Ai are its spectral matrices, the calculation 
of which is described below. The beauty of this result is that when we have some function 
of a matrix such as exp(Q), the meaning of which is not immediately apparent, it is changed 
into a function of the A values, exp(A), and, since the A values are ordinary scalar numbers, 
the problem disappears. 

For example, equation 83 shows immediately, for f(M) = Mil, that 

i=n 

LAi=I 
i=l 

and for f(M) = M, we also see immediately that 

i=n 

LAiAi = M 
i=l 

These two results are useful in checking calculations of the spectral matrices, Ai' 

(84) 

(85) 

It may also be mentioned that the spectral matrices have the interesting property that 
mUltiplying together any pair of them results in a matrix that is all zeroes; i.e., AiAj = 0 
(i '* j). In fact, this property is responsible for many of their useful characteristics. 
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Figure 1. Probability density of first latency (a) over 5 sec and (b) near the origin. 
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The two particular examples of the application that we have used in the foregoing 
sections are, first, to calculate powers of a matrix in Section 6 (equation 67), i.e., taking 
f(M) = Mr 

i=n 

Mr= ~ A'A~ .t:J I I 

i=1 

and, second, the ubiquitous exponential of a matrix, f(M) = exp(M), 

i=n 

exp(M) = ~ Ai exp(Ai)' 
i=1 

(86) 

(87) 

In most of our examples the matrix M represents Qt or some subsection of Q multiplied by t. 

9.2. Calculation of the Spectral Matrices 

Now we come, at last, to describing how actually to calculate the spectral matrices, the 
step that underlies almost everything described in the preceding sections. It is not hard 
because library routines are available to do all the difficult bits. 

First we will just describe the bare bones of the algorithm that enables computation of 
the quantities Ai and Ai that were first introduced in equation 21. Later we will discuss the 
mathematics of it a little, but that can be skipped by those who do not care to know it. 

Any good computer library contains routines that do a trick called 'finding the eigenval
ues of a general square matrix'. The term eigenvalue is discussed briefly in Appendix 1, but 
all we need to know here is that the required values of Ai are nothing other than the eigenvalues 
of the matrix -Q, and the time constants are the reciprocals of these values, Ti = lIA i' We 
therefore simply put the values for the transition rates into Q, change the signs of all the 
elements to get -Q, and use a standard routine to calculate the eigenvalues and hence the 
time constants (alternatively, find the eigenValues of Q, and change their sign). A matrix of 
size k X k, such as Q, will generally have k eigenvalues. The matrix Q (and -Q) is singular, 
which means that one of the eigenvalues will be zero (and we do not divide by zero to get 
a time constant!); it is usually convenient to arrange for this to be the first one, so we will 
assume AI = O. 

Standard computer library routines will also find the eigenvectors of the matrix -Q 
(usually these will be calculated in the same routine as the eigenvalues). The routine will 
often produce the k eigenvectors, each a column vector Xi associated with the value Ai, 
already in the form of the columns of a matrix X (if it does not supply them in this form, 
then use the Xi to create a matrix X). Thus, X can be thought of as a set of columns 

(88) 

This is now inverted to produce a matrix which we shall call Y = X- I; again, a standard 
routine will do that. We shall denote the ith row of Y as Yi (a 1 X k matrix). We are now 
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in a position to calculate the k spectral matrices. denoted Ai. that are needed to complete 
the trick. These are calculated as 

i=ltok (89) 

These are each square k X k matrices. as they arise from a column postmultiplied by 
a row (see example AS in the Appendix). You may not easily find this final part as a ready
made program. but it is very simple to program, just a few things to multiply together. Then 
eQt is represented in the form of equation 21, which leads, as we have seen in several 
examples, to various functions of interest: all have the form of a mixture of exponentials 
with rate constants Ti and weights that are computed by pre- and postmultiplying the matrices 
Ai by various appropriate vectors. 

9.3. Other Exponentials 

We have described the spectral representation of eQ/• Exactly the same procedure applies 
if you want to use QBiBi. Qoooo, etc. instead of Q. The only differences are that, instead of k, 
you will get kBi' kee. etc. eigenvalues and Ai matrices. and usually none of the eigenvalues 
will take the value zero. 

9.4. Calculation of Spectral Matrices Using the NAG Library 

As a particular example of the sort of code needed. the following is a subroutine (in 
FORTRAN) that calls the NAG library subroutine F02AGF, which returns the eigenvalues and 
eigenvectors of a general square matrix. If, for example. we want the spectral matrices and 
eigenvalues of Q~~, we put the appropriate elements of Q into an array QFF and call 
QMAT thus: 

call QMAT(QFF, Amat, kF. eigenval, ifail) 

This subroutine might be made more complete by allowing adjustable array dimensions, by 
adding a routine to sort the eigenvalues (along with their associated eigenvectors) into 
ascending or descending order. and by adding checks on the accuracy of matrix inversion 
(e.g., by checking that XV = I to acceptable accuracy), but the version shown works fine. 

subroutine QMAT(Q,Amat,k,eigenval,ifail) 
c Calculation of eigenvalues and spectral matrices using the NAG library 
c routine F02AGF 
c INPUT: 
c Q=double precision matrix (kXk) 
c k=size of Q 
c OUTPUT: 
c eigenval(i)=eigenvalues of Q (i=l, ... ,k) 
c A(m)=mth spectral matrix of Q (m=l, ... ,k). Each A(m) is kXk in 
c size and Amat(i,j,m) is value in ith row and jth column of A(m) 
c ifail=O if there are no errors in the NAG routine, F02AGF 
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c 
IMPLICIT double precision (A-H,O-Z) 
double precision Q( 1 0, 1 O),Amat( 1 0,10,1 O),eigenval( 1 0) 
double precision X(lO,lO),Y(lO,lO) 

c next 2 lines for F02AGF 

c 

double precision QD( 10, lO),eigimag(1 O),Ximag( 10, 10) 
integer*4 iwork(lO) 

c Define QD = -Q; (this also preserves the input value of Q) 
do i = l,k 

c 

do j = l,k 
QD(ij) = -Q(ij) 

enddo 
enddo 

km = 10 !maximum k, defined by declarations 
ifail = 0 
call F02AGF(QD,km,k,eigenval,eigimag,X,km,Ximag,km,iwork,ifail) 

c X now has columns that are the real parts of the k column eigenvectors 
c of Q. Now invert X using a matrix inversion subroutine; put result in Y. 

call MATINV(X,k,km, Y,km) 
c Calculate the spectral matrices, A(m), from X and Y. 

do m=l, k 
do i=l, k 

do j=l. k 
Amat(i, j, m)=X(i, m)*Y(m, j) 

enddo 
enddo 

enddo 
RETURN 
end 

617 

Another generally useful bit of code is the following fragment that will calculate scalars, 
W m• by premultiplying Am by a row vector, defined as an array row(l), and postroultiplying 
it by a column vector defined as an array col(z). The distributions described in earlier sections 
mostly end up in this form. The subscript m is used here for Am so we can keep to the usual 
notation of using iJ for rows and columns. 

do m = l,k 
w(m) = 0.0 
do i = l,k 

doj = l,k 
w(m) = w(m) + row(i) * Amat(ij.m) * colO) 

enddo 
enddo 

enddo 
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9.5. Calculation of Matrix Exponentials Using MAPLE 

In recent years a number of programs have been developed that are able to carry out 
symbolic manipulation, such as factorization, differentiation, integration, and many other 
mathematical operations as well as doing numerical calculations. We give here a simple 
example in one of these programs, called MAPLE. 

Let us take the case of the shut-time distributions, for which we need the exponential 
of Q"". First we must start the linear algebra package and then create the matrix 

with(linalg): 

Q/f.=matrix(3, 3, [-19,4,0,0.05, -2.065,2,0,0.01,-0.01]); (90) 

Then eQ"' is evaluated at t = 2, say, simply be typing 

giving the result 

exponential(Qff*2); 

[
1.381 X 10-5 0.004786 0.2002] 
5.982 x 10-5 0.02078 0.9529. 
1.251 X 10-5 0.004764 0.9948 

If instead we want the spectral expansion, the eigenvalues are returned by 

eigenvals( -00; 

giving 

[19.01, 2.063, 0.0002639], 

and 

eigenvects( - 00; 

(91) 

(92) 

(93) 

(94) 

(95) 

gives the above eigenvalues together with the eigenvectors, which we report below as columns 
of a matrix X in the same order as the corresponding eigenvalues in equation 94: 

[ 
9.996 0.2358 0.02042] 

X = -0.02949 0.9986 0.09702 
1.55 X 10-5 -0.004864 0.09965 

(96) 

From these one can obtain the spectral matrices as described atthe beginning of this section. 
Notice, however, that the eigenvalues in equation 94 have come out in the reverse order 
from those above equation 55, so the Ai calculated from X in equation 96 will also come 
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out in reverse order compared to those in equation 58; none of this matters as long as you 
keep track of what goes with what. As discussed in the Appendix, the eigenvectors are not 
unique, as they can each be multiplied by arbitrary nonzero constants (so do not worry too 
much if your program gives different results), but the resulting Aj should be the same. 

9.6. Calculation of Spectral Matrices and Matrix Exponentials Using 
MATHEMATICA 

Another powerful modern computer algebra package, having broadly similar features 
to MAPLE, is MATHEMATICA. We illustrate the use of this also with some simple examples. 
As in the previous section we will look at shut times. 

Qff = {{ -19,4, O}, {0.05, -2.065, 2}, {O, 0.01, -0.01}}; (97) 

is equivalent to the MAPLE statement 90, and MatrixForm[Qff] will print it so that it looks 
like the result in equation 51. 

MatrixExp[Qff 2]; (98) 

is the equivalent of statement 91 and gives the same result. If we want to use the spectral 
expansion explicitly, we can use a series of statements as follows. 

The eigenvalues and eigenvectors can be found from 

{vals,vects} = Eigensystem[ -Qff]; (99) 

The eigenvectors are stored as rows, and we use columns, so 

x = Transpose[vects]; Y = Inverse[X]; (100) 

Now we can define a function, let us call it expqt to calculate eQt for any t using equation 
107, below. Thus, 

expqt[t_]: = X.DiagonalMatrix[E"( -vals t)].Y; (101) 

We can now use this function for any t; for example, 

expqt[2] 

now gives the same result as equation 98. 
Notice that in these examples a space indicates multiplication by a scalar, and a dot 

indicates matrix multiplication. 
To extend the example, we can do the calculations for the probability density of first 

latency discussed in Section 8. We need to set some vectors 

phis = {O,O,l}; uf = {l,l,l}; 
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then define a new function 

latencypdf[t_]: = -phis.expqrt[t].Qff.uf; (102) 

which is a representation of equation 49. Then we can use this for any t; for example, 
latencypdf[O] returns the value 0, confirming the discussion in Section 8, where it was said 
that the density starts at 0 when t = O. A plot of this density over the interval 0 s t s 5 
ms can be had simply by issuing the command 

Plot[latencypdf[t], {t,O,5}] 

You need a few extra options to label it and make it pretty. 
The spectral matrices have, in effect, been built into equation 101. If you want to find 

them explicitly, they can be found as 

Al = Outer[Times,vects[[I]],Y[[I]]] (103) 

This does the calculation of equation 89 for the first eigenvector and the first row of the 
matrix Y. The second and third spectral matrices can be found similarly, simply replacing 
the number 1 wherever it occurs in equation 103 by 2 or 3, as appropriate. The results should 
be the same as equation 58, although not necessarily in the same order (see discussion above 
concerning MAPLE). 

9.7. Another Way to Calculate the Exponential of a Matrix 

Most people will want to use the spectral representation method because they feel that 
they can interpret the time constants that it yields. Sometimes, however, you may not need 
that, and an alternative would do. A number of ways are discussed by Moler and van Loan 
(1978). We discuss here one method that we have found robust; an APL program that 
implements it appears in Hawkes (1984). 

Let M = Qt. for some fixed t. Then we want to calculate eM. There are two essential 
parts to this method. 

9.7.1. Core Method 

If M is in some sense 'small', then it is easy and quite accurate to use a truncated series 
calculation similar to equation 20; i.e., 

(104) 

We have found stopping after N = 13 terms is sufficient. What is meant by small? Take the 
sum of the modulus of each element of M in the ith row; do this for each row and let .6. be 
the biggest of these sums. The core method works well if .6. < 112. 
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9.7.2. Squaring Method 

If a > 112, then find an integer r such that flIR < 112, where R = 2'. The essence of 
the method is that 

(105) 

so calculate T = eMIR using the core method, and then find TR by matrix multiplication. 
This is quite cunning. but the choice of R to have the form 2' is also very cunning because 
it means you only need to do r matrix multiplications instead of R - 1, by calculating 
successive squares. For example, if r = 4 so R = 16, then T2 = TXT; T4 = T2 X T2; 
T8 = T4 X T4; T 16 = T8 X T8; and you have calculated T 16 with a series of just 
four multiplications instead of 15 if you did it the hard way: T 16 = TXT X TxT X 
T ... X T. 

9.8. Further Mathematical Notes 

In this section we discuss briefly the mathematical justification of the spectral expansion. 
It is not essential reading for those who merely want to do the calculations but serves to 
satisfy the mathematically curious. 

In the Appendix we describe how a square matrix, M, can, in some circumstances, be 
represented in the form M = XAX- 1, where A is a diagonal matrix containing the eigenvalues 
of M and the columns of the matrix X consist of the corresponding eigenvectors of M. It 
can be shown that this is always possible if M is the Q matrix of a reversible Markov process 
and that the eigenvalues are real and negative (apart from the one zero value Al = 0), and 
the eigenvectors have real elements. The eigenvalues, Ai, of the matrix -Q are simply minus 
the eigenvalues of Q and are therefore nonnegative; the eigenvectors of Q and -Q can be 
taken as the same. This is also true if Q is replaced by any of the submatrices Q.sIl.sll, QI')I'), 
Q;>F;>F, <h;~ with dimensions reduced from k to k.sll or kl'), etc., and in those cases none of the 
eigenvalues are zero. 

Equation (A15) of the Appendix then implies that 

Q' = X(-AYX- I (106) 

Now from equation 20 we find that 

eQt = I + Qt + (Qt)2 + (Qt)3 + (Qt)4 + ... 
2! 3! 4! 

= X[I + (-At) + (-Atf + (-At)3 + (-At)4 + ... ]X-I 
2! 3! 4! 
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The expression in brackets is obviously e-At, but if we look at it in detail we see that it is 
a sum of diagonal matrices, so it must again be diagonal. Then 

(107) 

Furthermore, the ith element on the diagonal of e-A1 is just 

1 + (-A.t) + (-A;t)2 + (-A;t)3 + (-A;t)4 + ... = exp(-A.t) 
I 2! 3! 4! I 

The key result (equation 21) therefore follows immediately from equation A20 of the Appen
dix. We have thus justified the general statement (equation 83) for the particular case of 
the exponential function (remembering that, for convenience, we choose to work with the 
eigenvalues of -Q instead of Q). 

10. Time Interval Omission 

All of the preceding distributions are derived under ideal assumptions. It has long been 
recognised, however, that the limitations on observational resolution caused by noise and 
filtering by the recording equipment can distort the observation of open times and shut times 
through failure to observe very short intervals. Some discussion of this phenomenon is given 
in Chapter 18 (this volume). We are unable to go into details here but note that, although it 
is naturally more complicated, and the nice mixture-of-exponentials feature now only appears 
as a very good asymptotic approximation, the kinds of matrix operations involved are mostly 
no more difficult than those discussed here. The main complication arises from the need to 
find some sort of generalised eigenvalues, which is equivalent to finding at what values of 
some parameter a certain determinant of a matrix vanishes: that is not all that difficult. Some 
details are given by Hawkes et al. (1992). 

11. Concluding Remarks 

The results of the classical theory are quite easy in terms of matrix algebra provided 
one can calculate the exponential of certain matrices. Computer software is readily available 
in many languages or packages that will carry out all of the necessary operations, including 
(sometimes with a little bit of effort) those exponentials. Thus, it should not be too difficult 
for anyone to put together a program in his or her own favourite system. We hope this 
chapter helps to clarify what is needed. 

The necessary tools can be summmarised as follows. It is important to note that all 
calculations should be done using double-precision arithmetic. You will need: 

1. Subroutines/procedures to add, subtract, multiply, and invert matrices. 
2. A routine to extract a submatrix (consisting of specified rows and columns) from a 

larger matrix (unless the other routines are capable of operating directly on subsections 
of a matrix). 
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3. A routine to find the eigenvalues and eigenvectors of a general square matrix, 
preferably sorted into ascending or descending order of the eigenvalues, and to 
calculate the spectral matrices from them. 

The numerical examples provide a benchmark against which you can test the results 
from your own programs. Good luck! 

Appendix 1. A Brief Introduction to Matrix Notation 

This account is a brief synopsis. For further details see, for example, Stephenson (1965) 
or Mirsky (1982). 

AI.I. Elements of a Matrix 

A matrix is a table and is usually denoted by a bold type symbol. It is rather like a 
spreadsheet, the entries in the table being defined by the row and column in which they 
occur. The entry in the ith row and the jth column of the matrix A, an element of A, is 
usually denoted in lower case italic as aij' A matrix with n rows and m columns is said to 
be an n X m matrix, or to have shape n X m. If n = In, we have a square matrix. Thus, for 
example, 2 X 2 and 2 X 3 matrices can be written as 

(AI) 

Clearly, a I X 1 matrix has just one element and can, for most purposes, be treated as an 
ordinary number (called a scalar, which has no shape), though strictly speaking it is not. 

The elements for which i = j are called diagonal elements (e.g., all and a22, in this 
example), and the rest (i =1= J) are called off-diagonal elements. 

AI.2. Vectors 

Vectors are nothing new. In the context of matrix algebra they are simply matrices that 
happen to have only one row (a row vector or I X n matrix) or only one column (a column 
vector or n X I matrix). They are manipulated just like any other matrix. 

AI.3. Equality of Matrices 

Two matrices are said to be equal if all the corresponding elements of each are equal. 
Clearly, in that case, the two matrices must both be the same shape. For example A = B 
means, in the 2 X 2 case, 
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which is a shorthand way of writing the four separate relationships: all = b ll , al2 = b12, 

a21 = b2h and a22 = b22• 

At.4. Addition and Subtraction of Matrices 

This is very easy. You just add (or subtract) the corresponding elements in each of them 
(clearly, the two matrices must be the same shape). Thus, for example, 

shape: 2X2 2X2 2X2 

or, more briefly, Cij = aij + bjj for all i andj. Subtraction, A - B, is defined in the obvious 
equivalent manner. 

At.S. Multiplication of Matrices 

The definition of the product of two matrices may, at first sight, seem a bit perverse, 
but it turns out to be exactly what is needed for the convenient representation of, for example, 
simultaneous equations or for representation of all the possible routes from one state to 
another [see, for example, section 2 of Colquhoun and Hawkes (1982)]. Multiplication goes 
'row into column.' For example: 

shape: 2X2 2X2 2X2 

Thus, the element in the ith row and the jth column of the product, C, is obtained by taking 
the ith row of A and the jth column of B, multiplying the corresponding elements, and adding 
all these products. Clearly, the number of columns in A must be the same as the number of 
rows in B. If A is an n X m matrix, and B is m X k. then the product, C = AD will be an 
n X k matrix. More formally, the element Cij is obtained from the sum of products 

m 

Cij = 'L airbrj 

,=1 

Some computer languages allow matrices to be added or multiplied symbolically, e.g., 
by simply writing A = B * C; in others a subroutine or procedure must be called to do this. 
In the APL language, matrix multiplication is a special case of a powerful idea called the 
inner product operator. The APL expression C~A + . XB, although not standard mathematical 
notation, reflects the fact that the result is obtained by a combination of adding and multiplying 
(guess what the result of A X . +B is). 
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It is important to note that, contrary to the case with ordinary (scalar) numbers, it is 
not generally true that AB and BA are the same (multiplication of matrices is not necessarily 
commutative). Indeed, both products will exist only if A has shape n X m and B has shape 
m X n: then the product AB has shape n X n, whereas BA has shape m X m. The two 
products will only have the same shape if A and B are square matrices of the same shape, 
and even then the products are not necessarily the same. We must therefore distinguish between 
premultiplication and postmultiplication. In the product AB, it is said that A premultiplies B 
(or that B postrnultiplies A). 

If a matrix is multiplied by an ordinary (scalar) number, x say, this means simply that 
every element of the matrix is multiplied by x. Thus xA, which is equal to Ax, is a matrix 
with elements xaij. 

It can be shown that matrix mUltiplication is associative; i.e., parentheses are not needed 
because, for example, A(BC) = (AB)C, which can therefore be written unambiguously as 
the triple product ABC. 

Al.6. Some More Examples of Matrix Multiplication 

A few more examples may help to clarify the rules given above. If we postmultiply a 
row vector (a 1 X n matrix) by a column vector (n X 1 matrix), we get an ordinary (scalar) 
number (a 1 X 1 matrix). For example, 

(A3) 

shape: lX3 3XI IXI 

When looking at a matrix expression, it is always useful to note the size of each array 
in the expression, as written below the results above. This makes it instantly obvious, for 
example, that the result in equation A3 is scalar. Likewise, the expression aXb where a is 
a 1 X n row vector, X is an n X m matrix, and b is an m X 1 column vector, is clearly also 
scalar. Note, however, that we sometimes do need to distinguish between a scalar and a 1 
X 1 matrix; for example, if C is a 3 X 3 matrix and a and b are as above, then (ab)C makes 
sense if ab is regarded as a scalar, but it is not equal to a(bC) because the multiplication 
bC is not possible (you cannot multiply a 3 X 1 and a 3 X 3 matrix), and you have broken 
the associative law mentioned above. If you consider ab as a 1 X 1 matrix, however, you 
cannot multiply that by C either, so that is all right. Users of logical software, such as APL 

or MATHEMATICA may need to be careful of this distinction. 
Note that it follows from equation A3 that aaT, where aT is the transpose of a (see 

below), is a sum of squares, thus: 

shape: IX3 3XI IXI 
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Similarly, if u is a unit column vector (all elements UI = 1), then premultiplying it by a row 
vector simply sums the elements of the latter (this is a common feature in the distributions 
described in this chapter), thus: 

(A4) 

If the multiplication is done the other way around, ba instead of ab, we are multiplying 
an n X 1 matrix by a 1 X n matrix, so the result has shape n X n, thus: 

(AS) 

shape: 3Xl IX3 

AI.7. The Identity Matrix 

The matrix equivalent of the number 1 is the identity matrix, denoted I. This is a square 
matrix for which all the diagonal elements are 1, and all others are zero. Actually there are 
lots of different identity matrices, one for each possible shape, 1 X 1, 2 X 2, 3 X 3, etc.; 
often we do not bother to indicate the shape because it is usually obvious from the context. 
It has the property that multiplication of any matrix by I of the appropriate shape does not 
change the matrix. For the 2 X 2 and 3 X 3 cases, we have, respectively, 

[1 0] [1 0 0] 
1= Oland 1= ~ ~ ~ (A6) 

Thus, for example, using the matrices defined in equation AI, 

AI=IA=A 

CI = IC = C 

Note that the I matrix that postmultiplies C must have shape 3 X 3, whereas all the others 
must be 2 X 2. 

AI.S. Determinants 

A determinant is a number (not a table) that can be calculated from the elements of a 
square matrix. The determinant is usually written just like the matrix, except that it is enclosed 
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by vertical lines rather than brackets (it therefore looks rather similar to the matrix, and it 
is important to remember that the whole symbol represents a single number). For example, 
the determinant of the 2 X 2 matrix in (AI), denoted det(A), is 

(A7) 

The right-hand side of this shows how the number is calculated from the elements of A. A 
matrix that has a determinant of zero, det(A) = 0, is said to be a singular matrix; such a 
matrix has a linear relationship between its rows or between its columns and cannot be 
inverted (see below). 

For larger matrices the definition gets a bit more complicated. One does not have to 
worry too much about the details, as most scientific software has functions to calculate a 
determinant. The next paragraph may therefore be safely skipped. 

For an n X n matrix A, the determinant is defined as 

where the summation is over all permutations 'II' of the integers I to n, and a('II') equals I 
if 'II' is an 'even' permutation and equals -1 if 'II' is on 'odd' permutation. For example, if 
A is a 3 X 3 matrix, then 

For more detail see any standard text, such as one of those referenced above. 

Al.9. 'Division' of Matrices 

If e = AB, then what is B? In ordinary scalar arithmetic we would simply divide both 
sides by A to get the answer, provided A was not zero. When A and B are matrices, the 
method is analogous. We require some matrix analogue of what, for ordinary numbers, would 
be called the reciprocal of a square matrix A. Suppose that some matrix exists, which we 
shall denote A -I, that behaves like the reciprocal of A in the sense that, by analogy with 
ordinary numbers, 

where I is the identity matrix. The matrix A -I is called the inverse of A. Thus, the solution 
to the problem posed initially can be found by premultiplying both sides of e = AB by A-I 
to give the result as B = A -Ie. In the case of a 2 X 2 matrix the inverse can be written 
explicitly as 

A-I = [a22 /det(A) -aI2/det(A)] 
-a21/det(A) all/det(A) 

where det(A) is the number defined above. It can easily be checked that this result is correct 
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by multiplying it by A: the result is the identity matrix, I. It is apparent from this that the 
inverse cannot be calculated if det(A) = 0 because this would involve division by zero. 
Thus, singular matrices (see above) cannot be inverted. 

The inverse of a product can be found as 

provided A and B are both invertible. 
We will not define here how to write down explicitly the elements of the inverse of a 

matrix for larger matrices. The explicit form rapidly becomes very cumbersome, and accurate 
numerical calculation of the inverse of large matrices requires special techniques that are 
available in any computer library. 

AI.IO. Differentiation of a Matrix 

This involves no new ideas. You just differentiate each element of the matrix. Thus, 
the expression dAJdt simply means, in the 2 X 2 case, 

dA = [dallldt da 121dt] 
dt da21 , dt da22' dt 

(A8) 

AI.ll. Transpose of a Matrix 

Swapping the rows and columns of a matrix is referred to as transposition. If A = [aiJ, 
then its transpose, denoted AT, is AT = raj;], In the case of the matrices defined in equation 
AI, we have, therefore, 

The transpose of a product is 

AI.ll. Eigenvalues and Eigenvectors of a Matrix 

Any square matrix can be represented in a simple form that has nice properties that 
depend on its eigenvalues and eigenvectors. If M is an n X n matrix, then a nonzero (n X 
1) column vector x is said to be an eigenvector of M if there is a scalar, A, such that 

Mx= AX (A9) 
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Then A is called the eigenvalue corresponding to x. Such an eigenvector is not unique because 
you can multiply x by any nonzero scalar and the equation above is still satisfied, with the 
same value of A. 

Because it makes no difference if any matrix or vector is multiplied by an identity 
matrix, the above equation can be written as Mx = Alx or 

(M-Al)x=O (AlO) 

Now, any square matrix, when multiplied by a nonzero vector, can only yield a zero result 
if it is singular, i.e., if its determinant is zero. Thus, 

1M - All = 0 (All) 

The eigenvalues are the solutions to this equation. When the equation is evaluated algebrai
cally, it turns out to be a polynomial in A of degree n and so, by a well-known theorem in 
algebra, it has n solutions, AI, A2, ... All' For example, in the case n = 2, using equation A7, 

or 

This is a quadratic equation in A having two roots Al and A2' Note that, from school algebra, 
we have that the sum of the roots, A I + A2, is equal to minus the coefficient of A in the 
equation, namely mll + m22 and the product of the roots, AIA2' is equal to the constant term 
mllm22 - ml2m2h which we recognize as being the determinant det(M). These are examples 
of two quite general results: 

1. The sum of the eigenvalues of a square matrix equals the sum of the its diagonal 
elements, which is known as the trace of the matrix. 

2. The product of the eigenvalues equals the determinant of the matrix. 

Although there are always n roots of an n X n matrix, they are not necessarily distinct. 
For example, if M is the 2 X 2 identity matrix, the above equations become (1 - A)2 = 0, 
so both roots are 1; i.e., A = 1 is a repeated root. Finding roots of polynomials is not always 
easy, but there are standard computer programs widely available to find these eigenvalues 
and the eigenvectors Xi that go with them. For given A i' the corresponding eigenvector 
satisfies equation A9 or, equivalently, AlO. Note that equation AlO is very much like the 
transpose of equation 10 for finding an equilibrium vector (if you identify M - Ail with 
Q), so it is not too difficult. Remember that the scaling of an eigenvector is arbitrary: any 
constant times the eigenvector is also an eigenvector, but the arbitrary scaling factors cancel out 
during subsequent calculations so they are not important for the applications discussed here. 

The set of equations 

MXj = AiXj, i=lton 
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can be written as a single matrix equation, MX = XA, or, simply interchanging the two 
sides of the equation, 

XA=MX (A12) 

where X is a matrix whose columns are the eigenvectors Xi' Thus, X can be written as 

(Al3) 

There is one eigenvector for each eigenvalue, so it does not matter which order we put the 
eigenvalues in, as long as the eigenvectors are kept in the corresponding order. A is an n X 
n diagonal matrix with the eigenvalues Aj down the diagonal and zeroes everywhere else. 

In general, matters can get complicated from here on if some of the eigenvalues are 
repeated roots; in that case we need something called the Jordan canonical form, which can 
be found in advanced textbooks on algebra or, in the Markov process case, Cox and Miller 
(1965, Chapter 3). Fortunately, in the case of reversible Markov processes, these complications 
do not generally arise. So we will assume, sufficiently for our purpose, that the eigenvalues 
are all distinct, and then it can be shown that the matrix X is invertible, and so we can 
postmultiply equation A12 to obtain 

XAX- 1 = MXX- 1 = MI = M (AI4) 

The value of all this comes when we want to raise the matrix M to some power. 
For example, 

It is easy to see that we can keep on doing this, so that 

(AIS) 

The important thing about this is that, although, in general, raising the matrix M to the power 
r is quite difficult, it is very easy for the diagonal matrix A: the matrix Ar is simply another 
diagonal matrix whose diagonal elements are simply powers of the eigenvalues A[ so you 
only have to calculate powers of scalars. 

It should be noted that, in general, the eigenvalues and the elements of the eigenvectors 
of M may be complex numbers. Fortunately, this is not the case in ion-channel models. 

There is another way in which we can represent equation AIS. To generalize a little, 
let D be any n X n diagonal matrix with diagonal elements d j , and let Y denote the inverse 
X-I, which we now consider as a set of rows 

Y= (AI6) 

Yn 

Then it is easy to see that the matrix product DY can be represented as a similar set of rows 
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DY= (AI7) 

Note that, because the d; are scalars, it does not matter if we write them before the Y; or 
after. Then 

y1dl 

Y2d2 

XDY= [Xl X2 ••• Xn] Yid; 

Now this looks just like a row times a column, similar to example A3, despite the fact that 
the elements here are vectors rather than scalars. But the nice thing about partitioned matrices 
is that, provided everything is the right shape, they behave formally just like ordinary matrices. 
Thus, in this case, 

n 

XDY = L XiYidi (AI8) 
i=1 

But XiYi is a column times a row, similar to example A4, and so the result is an n X n matrix 

(i = I to n) (AI9) 

These matrices Ai are called the spectral matrices of the matrix M. Then equation A18 can 
be written as 

n 

XDX- l = XDY = LAid; 
i=1 

As a particular example, equation AIS can now be written as 

n 

Mr = XArx-1 = ~ A -A! £.J I I 

i=1 

(A20) 

(A21) 

Thus, once we have calculated the eigenvalues and eigenvectors, and hence the spectral 
matrices, of the matrix M, we have only to calculate the powers of the (scalar) eigenvalues, 
mUltiply them by the constant matrices Ai> and add them instead of doing a lot of matrix 
multiplications to get Mr. 



632 David Colquhoun and Alan G. Hawkes 

Appendix 2. Some APL Code 

APL is a powerful computer language that uses an "executable notation," which differs 
from normal mathematical notation but is far more logically consistent. It has the advantage 
that, when you get used to the notation, the instructions you give the computer are essentially 
the same as you would write on paper. We illustrate some of the calculations for Sections 
5 and 6 to show what is possible. The version we have used is DYALOG APL. 

The hard part with any system is finding the eigenvalues and eigenvectors, and any 
code is too complex to show here, so let us assume there is a function EIGEN that results in 
a vector of eigenvalues and an X matrix of eigenvectors when supplied with a square matrix 
as argument. Suppose the transition rates shown in equation 4 are already stored in the 
matrix Q. 

Identify the index sets of subclasses and create a vector U containing five 1 's 

Af-12 () Bf-34 () Cf-,4 () Ff-BUC () Ef-AUB () Uf-5pl (A22) 

Note that the comma in the above line is important: it makes sure that C, consisting of a 
single number, is a vector, not a scalar; the () character simply allows several statements 
on one line. Next 

Yf-O 0 0 0 0 1 () PINFf-yB~Q, 1 (A23) 

finds the equilibrium distribution, p(oo), using the method of equation 17 (note that u in that 
equation is Sy while S is Q,l), with the numerical result of equation 18. The remaining 
numerical results arising from the APL statements shown below are reported in Section 5. 

PHISf-PINF[A] + .XQ[A;F] -:-PINF[A] +. XQ[A;F]+. XU[F] (A24) 

finds the initial vector 4>s (see equation 50 and the numerical result of equation 57). 
Now let 

(A25) 

After that L contains the eigenvalues of Q**, X the X matrix of eigenvectors, while A 
contains the set of all three matrices Al A2 A3 by doing each of the vector products in 
equation 89; the symbol" is the "each operator" in APL and B is the matrix inversion function. 
The result is shown in equation 56. The coefficients aj are then formed into the vector a, 
with three elements in this case, by a version of equation 52. 

af- -TAUX(CPHIS)+.x"A+.x"CQ[F;F]+.XU[F] (A26) 

with the numerical results shown in equation 56. 
To get the distribution of the number of openings per burst, evaluate equation 59 as 

GABf- -(BQ[A;A])+.xQ[A;B] () GBAf- -(BQ[B;B])+.XG[B;A] (A27) 

with results shown in equation 65. 
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The initial vector given by equation 61 is evaluated as 

PHIBf-num+(numf-PINF[C]+.XQ[C;A]+Q[C;B]+.XGBA)+.XU[A] (A28) 

where the numerator is stored in num to save calculating the same thing twice. 
The result is shown in equation 63. 
This time the spectral expansion needed is given by 

RHO Xf-EIGEN GAB+.XGBA <> MUf-+l-RHO <> SMf-(.1<tX)o.x".1HjX (A29) 

with numerical results for RHO, MU, and SM shown in equations 71-73, respectively. The 
calculation for MU follows from equation 69. 

Now form an identity matrix of shape k.rA, X k.rA, 

If- DIAG (pA)pl 

The formula for the areas is then given by equation 70, and the numerical results by 
equation 74: 

af- MUX(CPHffi)+.X"SM+.X"C(I-GAB+.xGBA)+.xU[A] (A30) 

Comparison of these equations with the corresponding ones in Sections 5 and 6 shows how 
easy it is (with a few little tricks you have to get used to) to translate the usual mathematical 
formulas into an equivalent executable notation. Results from the other sections can be 
obtained in much the same manner. 
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