
Chapter 18 

The Principles of the Stochastic Interpretation of 
Ion-Channel Mechanisms 

DAVID COLQUHOUN and ALAN G. HAWKES 

1. The Nature of the Problem 

1.1. Reaction Mechanisms and Rates 

Most mechanisms that are considered for ion channels (as for any other sort of chemical 
reaction) involve reversible transitions among the various possible discrete chemical states 
in which the system can exist. Other sorts of mechanisms may, of course, exist; for example, 
there may be an irreversible reaction step, a problem that is considered in Section 7. Our 
primary aim is to gain insight about the nature of the reaction mechanism from experimental 
observations. In this process, we may also obtain estimates of numerical values for the rate 
constants in the mechanism. 

The sort of mechanism that is commonly considered can be illustrated by the following 
examples. In each case, the symbol that denotes the rate constant for a transition is appended 
to the arrow that represents the transition; the interpretation of these rate constants is consid-
ered below. The simplest reaction mechanism consists of a transition between a single shut 
state of the ion channel and a single open state: 
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There are two states altogether. If a ligand must be bound before the ion channel can open, 
at least three discrete states are needed to describe the mechanism. The mechanism of Castillo 
and Katz (1957) has two shut states and one open state; this is usually represented as 
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where R represents a shut channel, R* an open channel, and A represents the agonist molecule. 

Note to the reader: At the author's request this chapter will use British spelling and the abbreviations ms 
and p.s instead of msec and Rsec. 
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The simplified mechanism of the axonal sodium channel also has two discrete shut 
states and one open state; if inactivation of the channel can occur without channel opening, 
the reaction must be written in a cyclical form: 

Open 

Shut 

\' '''-̀\Inactivated 
	

(3) 

Some other examples are considered below (see Sections 4 and 13). 
The usual procedure would be first to postulate a plausible mechanism, then to use the 

law of mass action to predict its expected kinetic and equilibrium behaviour, and finally to 
compare these predictions with experimental observations. Such predictions concern, of 
course, the average behaviour of the system. 

If we are recording from a large number of molecules (ion channels, in the present 
case), then it is only the average behaviour that can be observed. For example, if the transition 
rates between the various states are constant (do not vary with time), then the time course 
of the mean current, 1(t), through the ion channels will be described by the sum of k — 1 
exponential terms, where k is the number of states in the system (see examples above). Thus, 

1(t) = 1(3) + 	+ w2e-11T2 	 (4) 

[Note that exp(—t/T) is often used as an alternative way of writing e'.] For any specified 
mechanism, the amplitudes w, and the time constants T, can be calculated by the methods 
given, for example, by Colquhoun and Hawkes (1977), as can the predicted noise spectrum. 
A 'cookbook' approach to programming such calculations is provided in Chapter 20 (this 
volume). The values of T, each depend on all of the rate constants in the mechanism, and 
they have, in general, no simple physical significance (although in particular cases they may 
approximate some physical quantity such as mean open lifetime or mean burst length). 

If, on the other hand, we record from a fairly small number of ion channels, the 
fluctuations about the average behaviour become large enough to measure, and Katz and 
Miledi (1970, 1972) showed how these fluctuations (or 'noise') could be interpreted in terms 
of the ion channel mechanism. Suppose, for example, that there are N = 106  ion channels 
and that, at equilibrium, there are 1000 channels open on average. The probability that an 
individual channel is open at a given moment is p = 1000/106  = 0.001, so the standard 
deviation of the number of open channels is given by the binomial distribution as [Np(1 
p)] 1/2 = 31.6. The number of channels that are open at equilibrium is therefore not constant 
at 1000, but is 1000 ± 31.6, where the standard deviation reflects the random fluctuations 
in the number of open channels from moment to moment (see examples in Colquhoun, 1981, 
for an elementary discussion). 

The law of mass action states that the rate of any reaction is proportional to the product 
of the reactant concentrations. The proportionality constant is described as a 'rate constant' 
(a, (, k_ 1 , etc.) and is supposed to be a genuine constant, i.e., not to vary with time. This 
is not necessarily true, however; for example, the channel-shutting rate constant, a, is known 
to be dependent on membrane potential (for muscle-type nicotinic receptors), so it will stay 
constant only if the membrane potential stays constant (i.e., only as long as we have an 
effective voltage clamp). Furthermore, for an association reaction with rate constant k+1  
(dimension M's- I ), the transition rate (dimensions s-') will be k+lxA  where xA  is the free 
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ligand concentration; this will be constant only if neither the ligand concentration nor the 
rate constant varies with time. In many sorts of experiments there is a considerable risk of 
transient concentration changes that would violate this condition. Of course, it is still possible 
to solve the kinetic equations even if the transition rates are not constant, as long as their 
time course is known, but this adds considerably to the complexity (we no longer get sums 
of exponential terms) and is not considered here. 

We have already mentioned that the current, 1(t), is only an average value; there will 
be fluctuations about this average as a result of moment-to-moment random variations in 
the number of ion channels that are open. The smaller the number of ion channels that we 
record from, the larger (relative to the mean current) the fluctuations will be. When we 
record from a single ion channel, the current varies in a step-like fashion between (in the 
simplest cases) two values, fully open and fully shut (Neher and Sakmann, 1976; Hamill et 
al., 1981). The current is effectively never equal to its equilibrium value; it is always zero 
or 100%. Equilibrium can be defined only over a long time period; the term "fraction of 
channels open at equilibrium" must be replaced by "the fraction of time for which the single 
channel stays open," a quantity that can be measured accurately only over a period of 
observation long enough to contain many open and shut intervals. A long stretch of record 
is needed because we are looking at a single molecule, and its behaviour is, of course, random. 

1.2. Rate Constants and Probabilities 

In ordinary chemical kinetics, a rate constant describes the rate of reaction; for example, 
a in equation 1 or 2 describes the rate of the channel-shutting reaction. The transition rates 
(e.g., k_ 1  or k+ I xA) have the dimensions of frequency (s-1), and they can be interpreted as 
frequencies. For example, in equation 1, the number of shuttings that occur per second (of 
individual molecules) is simply a multiplied by the fraction of channels that are in the open 
state. At equilibrium, the number of shuttings per second (a times the fraction of channels 
that are open) will be equal, on average, to the number of openings per second (13' times 
the fraction of channels that are shut). This frequency interpretation of rate constants is 
described in more detail by Colquhoun and Hawkes (1994) and is illustrated in Sections 4.6 
(Fig. 6) and 9.1. 

However, when we look at a single ion channel, we see that the shutting takes place 
at random, so the rate constant must be interpreted in a probabilistic way: a is a measure 
of the probability that an open channel will shut in unit time (though, because a has dimensions 
of s', it is clearly not an ordinary probability, which must be dimensionless). Roughly, we 
can say that for a time interval At, 

Prob(open channel shuts during At) = aAt 

This is dimensionless, but it is still not a proper probability because it can be greater 
than unity. Also, this definition does not make clear whether or not several openings and 
shuttings are allowed to occur during the time interval At. It turns out that the proper way 
to write this definition can be arrived at by introducing a 'remainder term,' which we do 
not specify in detail but which has the property that it disappears (relative to At) as At 
becomes very small. This term would describe, for example, the possibilities of several 
transitions occurring during At, which clearly becomes negligible for small At. This remainder 
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term is written as o(At) (further discussion of such terms is found, for example, in Colquhoun, 
1971, Appendix 2). Thus, we can now write: 

Prob(open channel shut during At) = edit + o(At) 

More properly, the left-hand side should be written as a conditional probability, the probability 
that a channel shuts during At given that it was open at the start of this period: 

Prob(channel shuts between t and t + At 'channel was open at t) = otAt + o(At) (5) 

(the vertical bar is read as "given"; see Section 2). 
Notice that this is supposed to be the same at whatever time t we start timing our 

interval, and also to be independent of what has happened earlier, i.e., it depends only on 
the present (time t) state of the channel. This is a fundamental characteristic of our type of 
random process (a homogeneous Markov process). Further progress appears to be prevented 
by the unspecified term o(At) in equation 5. This term can, however, always be eliminated 
by dividing by At and then letting At tend to zero. In this way, the o(At) terms disappear, 
and we obtain a differential equation that can be solved in the normal way. This procedure 
is illustrated in Section 3. 

We have defined a probability in terms of a rate constant in equation 5; rearrangement 
of this gives a definition of the rate constant in probabilistic terms. Roughly, 

a 	(Probability of shutting in At) / At 

or, more properly, from equation 5, 

a = lim [Prob(channel shuts between t and t + At I open at 01 At] 
At—>0 

= Inn [Prob(channel shut at t + Ati open at 01 At]. 	 (6) 
At--+0 

More generally, we can define any transition rate in this way. Denote as the transition 
rate from state i to state j. Then 

qi;  = lim [Prob(state j at time t + At I state i at t)/ At] 	i * j 
At-30 

= lim [P,i(At)/At] 
at—>0 

(7) 

where 

P;;  (t) = Prob(state j at time tIstate i at time 0) 	 (8) 

Notice that a transition rate must always have dimensions of 

1.3. Fractal and Diffusion Models 

Classical chemical kinetics, based on the law of mass action, has always entailed the 
assumption that the system can exist in a small number of discrete states, as in the examples 
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Classical chemical kinetics, based on the law of mass action, has always entailed the 
assumption that the system can exist in a small number of discrete states, as in the examples 



Stochastic Interpretation of Mechanisms 
	 401 

given above. The advent of single-channel recording has provided perhaps the strongest and 
most direct evidence for the existence of discrete states of large protein molecules. The 
switch between shut and open states, or between open states of different conductance, is 
very fast, with no detectable intermediate states; this is exactly what is expected on the basis 
of the classical postulates of chemical kinetics. Yet, ironically, it is these same observations 
that have caused these postulates to be questioned. 

It has been suggested that, because proteins can exist in an essentially infinite number 
of conformations, it is inappropriate to postulate a small number of discrete states, and some 
sort of fractal or diffusion model should be preferred (Liebovitch et al., 1987; Lauger, 1988; 
Milhauser et al., 1988; Liebovitch, 1989). Such models usually predict that the probability 
of a transition occurring in unit time will not be constant and so differ fundamentally from 
the Markov model. There are several reasons to think that such approaches are not, at present, 
likely to be very helpful. 

The most important reason is that the experimental evidence shows Markov models to 
fit the data better than the alternatives (as formulated up to now); see, for example Korn 
and Horn (1988), McManus et al. (1988), Sansom et al. (1989), McManus and Magleby 
(1989), Petracchi et al. (1991), and Gibb and Colquhoun (1992). An example of this evidence 
is given later (see Section 10.3). 

A second reason is that the theoretical argument is not entirely convincing. Fractals 
stem from mathematics rather than physics, so it is far from clear what they can tell us about 
the real world (the same comment applies to catastrophe theory, which, at the height of its 
fashion, was said to "explain" almost every biological phenomenon from riots to action 
potentials but is now almost forgotten). Diffusion theory, on the other hand, has a sound 
physical basis and must be taken more seriously. Clearly, a protein (or, indeed, much smaller 
molecules) can exist in an infinite number of conformations, but this does not preclude the 
existence of a limited number of states, or conformations, that are much more stable than 
the others (e.g., Lauger, 1985, 1988). Such "discrete" states are not, of course, fixed and 
stationary. All the parts of the molecule have thermal motion, much of it very rapid (on a 
picosecond time scale), so there is continuous fluctuation around the average structure of 
the "discrete" state, but if these fluctuations are of no great functional significance (e.g., 
have only a small effect on channel conductance), then there is no need to incorporate them 
into the model. To attempt to do so merely increases vastly the number of parameters to be 
estimated without contribution to the usefulness of the model. In fact, the fractal formulation 
does not attempt the impossible task of estimating all the relevant parameters but, on the 
contrary, attempts to describe the data with only two, neither of which has any obvious 
physical significance. 

In summary, the simple forms of the fractal argument that have been used fail to fit the 
data adequately in many cases. Furthermore, even if it were true that an infinite (or at least 
very large) number of states should be considered, it would be impossible to estimate from 
experimental data parameters with genuine physical significance. Just as in all other science, 
the mechanisms with a few discrete states that we use are undoubtedly approximations, but 
they have parameters that can be estimated, have real physical significance, and they have 
proven predictive value (see Colquhoun and Ogden, 1986; Horn and Korn, 1989). 

2. Probabilities and Conditional Probabilities 

The definitions just given are in terms of probabilities and conditional probabilities. It 
may be useful at this stage to illustrate exactly what these terms mean. Consider the behavior 
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of eight individual ion channels illustrated in Fig. 1. Imagine that these eight channels behave 
in a manner typical of a much larger number of channels so that the ratios given are good 
estimates of the true or long-term average values of the probabilities. One possible example 
of their behaviour is shown in Fig. 1. 

Only one channel of the eight is both open at t and shut at t + At, so 

Prob(open at t and shut at t + At) = (number open at t and shut at t + At)/(total number) 
= 1/8. 

However, the conditional probability, Prob(shut at t + At I open at t), although it has 
the same numerator, has a different denominator; it is defined with respect to the population 
of channels that obey the prior condition, i.e., those that were open at t. These are three in 
number (channels 4, 5, and 6), so the conditional probability is 

Prob(shut at t + At I open at t) = (number open at t and shut at t + At)/(number open at t) 

= 1/3. 

This is an example of the general rule of probability that for any events A and B, 

Prob(B I A) = Prob(A and B)/Prob(A) 

Prob(A and B) = Prob(A) Prob(B I A) 	 (9) 

In this case, A is 'open at t'; B is 'shut at t + At: So in this example, 

Prob(B I A) = (1/8)/(3/8) = 1/3 
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Figure 1. Illustration of the meaning of probabilities and 
conditional probabilities (see text). 

of eight individual ion channels illustrated in Fig. 1. Imagine that these eight channels behave 
in a manner typical of a much larger number of channels so that the ratios given are good 
estimates of the true or long-term average values of the probabilities. One possible example 
of their behaviour is shown in Fig. 1. 

Only one channel of the eight is both open at t and shut at t + At, so 

Prob(open at t and shut at t + At) = (number open at t and shut at t + At)/(total number) 
= 1/8. 

However, the conditional probability, Prob(shut at t + At I open at t), although it has 
the same numerator, has a different denominator; it is defined with respect to the population 
of channels that obey the prior condition, i.e., those that were open at t. These are three in 
number (channels 4, 5, and 6), so the conditional probability is 

Prob(shut at t + Atlopen at t) = (number open at t and shut at t + At)l(number open at t) 
= 113. 

This is an example of the general rule of probability that for any events A and B, 

Prob(B I A) = Prob(A and B)/Prob(A) 

Prob(A and B) = Prob(A) Prob(B I A) 

In this case, A is 'open at t'; B is 'shut at t + At.' So in this example, 

Prob(B I A) = (118)/(3/8) = 1/3 

(9) 
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In general, if A and B are independent, then the probabilities of B cannot depend on 
whether A has occurred or not. Therefore, Prob(B I A) can be written simply as Prob(B), 
and equation 9 reduces to the simple multiplication rule: 

Prob(A and B) = Prob(A) Prob(B) 	 (10) 

3. The Distribution of Random Time Intervals 

3.1. The Lifetime in an Individual State 

We are interested in the length of time for which the system stays in a particular state, 
for example, the open state. These lengths of time are random variables, and the form of 
their variability can be described by a probability distribution. Time is a continuous variable, 
so we wish to find the probability density function (pdf) of, for example, open lifetimes. 
This is a function f(t), defined so that the area under the curve up to a particular time t 
represents the probability that the lifetime is equal to or less than t. Thus, the pdf can be 
found by differentiating the cumulative distribution (or distribution function) Prob(open 
lifetime < t), which is usually denoted F(t). The pdf is thus 

f(t) = lim [Prob(lifetime is between t and t + At)/At] 	 (11) 
At—)o 

A number of approaches to the derivation of this distribution are possible. We shall 
first derive it directly and then mention some other approaches. Take, as an example, the 
length of time for which a channel stays open. First define a probability, which we shall 
denote R(t), as 

R(t) = Prob(channel stays open throughout the time from 0 to t) 	(12) 

It is worth noting that this is a rather different sort of probability from that used in analyzing 
relaxations or noise. In these cases, we are interested, for example, in the probability that a 
channel is open at time t, given that it was open at t = 0, regardless of whether the channel 
may have shut one or more times in between. In reliability theory, the sort of probability 
defined in equation 12 is known as the reliability function; it represents the probability that 
a system remains operational throughout the period 0 to t. 

Now, from equation 5 we know that 

Prob(shut at t + At I open at t) = ait + o(At), 	 (13) 

where a is the ordinary rate constant for the shutting reaction (or, more generally, the sum 
of the rate constants for all routes by which the open channel can shut). The channel obviously 
must either shut or not shut during At, so the probabilities for these two alternatives must 
add to unity. Hence, 

Prob(channel does not shut between t and t + Ati open at t) = 1 — aAt — o(At), (14) 
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where a. is the ordinary rate constant for the shutting reaction (or, more generally, the sum 
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add to unity. Hence, 
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From equations 9 and 12, we can now define 

R(t + At) = Prob(channel stays open throughout the time from 0 to t + At) 
= Prob(open throughout 0, t) • Prob(open throughout t, t + At I open 	(15) 

throughout 0, t) 

Now the crucial Markov assumption, discussed following equation 5, is that the last probability 
does not depend on the whole history from 0 to t but only on the fact that the channel is 
open at time t. Thus, 

Prob(open throughout t, t + Ail open throughout 0, t) 	 (16) 

= Prob(open throughout t, t + At I open at t) 

But equation 16 is just the probability that was derived in equation 14, and the first probability 
in equation 15 is simply R(t), so equation 15 can be written as 

R(t + At) = R(t)[l - otAt - o(At)] 	 (17) 

Thus, 

R(t + At) - R(t) 
= -R(t) + —

0(At)1 
At 	 At 

If we now let At ---> 0, the left-hand side becomes the first derivative of R(t), and the remainder 
term disappears, so 

dR(t)  
= aR(t). 

dt 
(18) 

As long as a is a constant (not time dependent), the solution of this equation is 

R(t) = e' 	 (19) 

because R(0) = 1 (i.e., channel cannot move out of the open state in zero time). 
Next, we notice that if the channel stays open throughout the time from 0 to t, its open 

lifetime must be at least t. This is the crucial step that relates the argument to the distribution 
of open times. We can therefore write 

R(t) = e't = Prob(channel stays open throughout time from 0 to t) 

= Prob(open lifetime > t) 	 (20) 

and therefore, 

Prob(open lifetime __ t) = 1 - R(t) = 1 - e-°" = F(t) 	 (21) 
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This defines the cumulative distribution, F(t), of open-channel lifetimes. The required pdf 
for the open-channel lifetime is the first derivative of this, i.e., 

f(t) = dF(t)I dt _dR
„, 	0)  

dt

(t)=  ete  
(t 

[for times less than zero, f(t) = 0]. 
This pdf is described as an exponential distribution, or exponential density, with mean 

1/a. It is a simple exponentially decaying curve. This is quite different in shape from the 
well-known Gaussian or "normal" distribution: rather than being a symmetrical bell-shaped 
curve, it is an extreme example of a positively skewed distribution with the mode (maximum) 
at t = 0 (compare with the Gaussian curve for which the mode is the same as the mean). 
The exponential distribution has the same sort of central role in stochastic processes as the 
Gaussian distribution has in large areas of classical statistics. 

For any pdf, f(t), the mean is given by 

mean = 	tf(t)dt 

For nonnegative random variables, f(t) = 0 when t < 0, and the lower limit of this integral 
can be taken as zero; then integration by parts yields a useful alternative formula that is 
sometimes easier to calculate. Thus, 

mean = J  y(t)dt = J  R(t)dt 	 (23) 

which, in the present example, is 1/a, the mean open lifetime. 

3.2. Another Approach to the Exponential Distribution 

An open channel must overcome a certain energy barrier before it can flip to a shut 
conformation. The energy needed for this purpose comes from the random thermal energy 
of the system. The bonds of the channel protein will be vibrating, bending, and stretching, 
and much of this motion will be very rapid, on a picosecond time scale. One can imagine 
that each time the molecule stretches, it has a chance to surmount the energy barrier and 
flip shut. Each "stretch" is like a binomial trial with a certain probability, p, of success (i.e., 
shutting) at each trial. Since the stretching is on a picosecond time scale, but the channel 
stays open for milliseconds, clearly, the chance (p) of success at each trial must be small, 
and a large number (N) of trials will be needed before the channel shuts. Now, when N is 
large and p is small, the binomial distribution approaches the Poisson distribution. The 
Poisson distribution gives the probability of there being no successes (i.e., no shutting) in 
time t as 	where a is the mean frequency of successes in unit time. If there is no success 
at shutting in time t, then the open lifetime must be greater than t, and, since we have found 
that the probability of this is e', we are led directly to equation 20 and hence to the 
exponential pdf. 

(22) 

CO 
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large and p is small, the binomial distribution approaches the Poisson distribution. The 
Poisson distribution gives the probability of there being no successes (i.e., no shutting) in 
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3.3. Generalizations 

The above argument was mostly concerned with the open time, but clearly the same 
argument applies to the time spent in any single specified state. For the simplest mechanism 
(equation 1), therefore, the open time is exponentially distributed with mean 1/cz, and the 
shut time has pdf g(t) = 13' e-13't, i.e., it is exponentially distributed with mean 143' for a 
single channel. If more than one channel contributes to the observations, the shut times will 
appear to be shorter than this, of course. In general, we can, by a similar argument, give the 
following rule: 

Lifetime in any single state is exponentially distributed with mean 	(24) 
= 1/(sum of transition rates that lead away from the state) 

In general, for mechanisms with many states, we expect that all of the distributions of 
quantities such as open times, shut times, burst lengths, and so on will be mixtures of 
exponentials. This will be the case when the transition rates are constant (see above), and 
we therefore expect Markov behaviour. Such distributions are often described has being a 
sum of exponential components, just like the macroscopic current in equation 4 (except that 
there will usually be fewer components in the single-channel distributions). It is actually 
preferable to refer to such distributions as having the form of a mixture of exponential 
distributions (or of exponential densities). Each component can be written in the form of a 
simple exponential distribution, i.e., Xt exp( — X, t), where X, is the reciprocal of the time 
constant, or mean, for the ith component, Ti = 1/X,. Each such distribution has unit area, 
and to ensure that the final distribution also has unit area, each component is multiplied by 
a fraction area, a„ the relative area occupied by the ith component; these are such that the 
sum of the areas is unity. Thus, the general form for a pdf that is a mixture of exponentials is 

f(t) = a i X i e'lt + a2 X2 e-x2' + • • • , 

or, for n components, 

i=n 

f(t) 	ai Xie-xi` 
	

(25) 
i=i 

where 

ai  

The question of the number of components that would be expected in particular cases is 
addressed below and discussed more generally in Section 13.5. 

It is often of interest to know the distribution of the time spent within any specified set 
of states (e.g., all shut states) rather than in a single state. In this case the system can oscillate 
among the various states within the set in a random way; the time that elapses before the 
set of states is eventually left will (under our usual assumptions) be described by a mixture 
of exponential distributions. The derivation of such distributions is exemplified by the burst-
length distribution discussed in Section 4.7 and by the derivation of the shut-time distribution 
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given by Colquhoun and Hawkes (1994). The general solution is given by Colquhoun and 
Hawkes (1982), and this is discussed briefly in Section 13.3 and Chapter 20 (this volume). 

3.4. Relationship between Single-Channel Events and Whole-Cell 
Currents 

It is, of course, no coincidence that, on one hand, the mean current through a large 
number of ion channels follows an exponential time course (see equation 4) and, on the 
other hand, the random lifetimes of elementary events are described by exponential distribu-
tions. This can be illustrated schematically for the case of the decay phase of a miniature 
end-plate current. According to Anderson and Stevens (1973), the decay phase, which follows 
a simple exponential time course, is determined by the lifetime of individual open channels. 
This is illustrated in Fig. 2b,c. At zero time, a number of ion channels are opened, almost 

Figure 2. a: An exponential distribution of the duration of channel-open times. The histogram shows the 
number of openings per bin of 0.5-msec width (R. temporaria, synaptic channels, 50 nM acetylcholine, —80 
mV, 8°C; D. C. Ogden, D. J. Adams, and D. Colquhoun, unpublished data). The continuous line shows an 
exponential probability density function that has been fitted to the observations (above 0.5 ms) by the method 
of maximum likelihood (see Chapter 19, this volume). It has a time constant of T = 3.2 ms, i.e., a rate 
constant of X = 	= 312.5 s". The estimated exponential probability density function is therefore (see 
equation 22) f(t) = ke-xl = 312.5e-312' 	the area under this curve is, as for any probability density 
function, unity. In the figure, f(t) has been multiplied by the number of observations that lie under the fitted 
curve (480) and expressed in units of (0.5 ms)" rather than 	so the continuous curve can be superimposed 
on the histogram (see Section 5.1.5 of Chapter 19, this volume). Thus, for example, the intercept at t = 0 
is plotted not as f(0) = 312.5 s' but as 312.5 s' X 480/2000 = 75 (0.5 ms)", where the factor 2000 is 
0.5 ms/1s. The horizontal dashed lines show the frequency in each bin as calculated from the continuous 
curve. b: Simulated behaviour of five individual channels that were open at the time (t = 0) at which the 
acetylcholine concentration had fallen to zero. Opening is plotted downward. The channels stay open for a 
random (exponentially distributed) length of time with a mean of 3.2 ms. c: Sum of the five records shown 
in b. The total number of open channels decays exponentially (as illustrated in Fig. 3c) with a time constant 
of 3.2 ms in this example. Reproduced from Colquhoun (1981), with permission. 
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number of openings per bin of 0.5-msec width (R. temporaria. synaptic channels. 50 nM acetylcholine, -80 
mY. 8°C; D. C. Ogden, D. J. Adams, and D. Colquhoun, unpublished data). The continuous line shows an 
exponential probability density function that has been fitted to the observations (above 0.5 ms) by the method 
of maximum likelihood (see Chapter 19, this volume). It has a time constant of T = 3.2 ms, i.e., a rate 
constant of A = lIT = 312.5 S-I. The estimated exponential probability density function is therefore (see 
equation 22) I(t) = Ae- A1 = 312.5e-312.51 S-I, the area under this curve is, as for any probability density 
function, unity. In the figure, I(t) has been multiplied by the number of observations that lie under the fitted 
curve (480) and expressed in units of (0.5 ms)-I rather than S-I, so the continuous curve can be superimposed 
on the histogram (see Section 5.1.5 of Chapter 19, this volume). Thus, for example, the intercept at t = 0 
is plotted not as 1(0) = 312.5 S-I but as 312.5 S-I X 480/2000 = 75 (0.5 ms)-I, where the factor 2000 is 
0.5 msll s. The horizontal dashed lines show the frequency in each bin as calculated from the continuous 
curve. b: Simulated behaviour of five individual channels that were open at the time (t = 0) at which the 
acetylcholine concentration had fallen to zero. Opening is plotted downward. The channels stay open for a 
random (exponentially distributed) length of time with a mean of 3.2 ms. c: Sum of the five records shown 
in b. The total number of open channels decays exponentially (as illustrated in Fig. 3c) with a time constant 
of 3.2 ms in this example. Reproduced from Colquhoun (1981), with permission. 
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synchronously, by a quantum of acetylcholine; the acetylcholine then rapidly disappears so 
that a channel, once it has shut, cannot reopen. The length of time for which each channel 
stays open is described by an exponential distribution (Fig. 2a,b), which ensures that the 
total current through a large number of such channels will decay along an exponential time 
course (Fig. 2c). 

This simple argument works only because the channels were supposed to open almost 
simultaneously. This is true, to a good approximation, for synaptic transmission mediated 
by nicotinic receptors, but it is far from true for NMDA-type glutamate receptors (Edmonds 
and Colquhoun, 1992). In such cases we need also to consider the distribution of the time 
(first latency) from the application of the stimulus (e.g., synaptic release of transmitter) to 
the time when the channel first opens. The complications that arise in such cases will be 
considered in Sections 9-11. 

3.5. Pooling States That Equilibrate Rapidly 

If, in mechanism 2, the binding step were very fast compared with the subsequent 
conformation change, and so fast that it was beyond the resolution of the experiment, then 
the vacant and occupied states would behave, experimentally, as a single (shut) state. This 
may be represented diagrammatically by enclosing the two states in a box, thus: 

R 	AR AR* 
a 

 

shut 'state' 

 

(26)  

If the binding and dissociation are fast enough, the vacant and occupied states will be 
close to equilibrium at all times (even if the system as a whole is not). Therefore, 
the transition between them has been labelled only with the equilibrium constant, KA = 
k_ 11/ 4 1, rather than with the separate rate constants. This procedure has reduced the effective 
number of states in the mechanism from three to two (just shut and open). This does not 
affect the way we look at the shutting reaction, with rate constant a. However, we have to 
be more careful about how we treat the opening reaction. The transition rate from shut to 
open can no longer be taken as [3, because the "shut state" spends part of its time without 
ligand bound (R), and while the receptor is not occupied, opening is impossible. The fraction 
of time for which the "shut state" is occupied (in AR) and so capable of opening is simply 
the equilibrium fraction of shut states that are occupied, i.e., xA/(xA  + KA). Thus, the effective 
opening rate constant is 

R 
XA 

XA KA 
(27)  

When f3' is so defined, the three-state mechanism in equation 2 becomes formally identical 
to the two-state mechanism in equation 1. 

The argument just presented is related to the discussion of 'discrete states' in Section 
1.3. What we refer to here as a discrete state must, since the protein is not stationary, consist 
of many conformations (or substates) that interchange rapidly. But if the lifetime of each 
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individual substate is exponentially distributed, we expect that the overall lifetime will itself 
be a mixture of exponentials with Markovian behaviour. If most of the time is spent in one 
substate, which may be visited many times, then we expect that the distribution of the overall 
lifetime will itself be essentially a simple exponential. This is a result of the following fact, 
which is derived later, in Section 9.3: 

The sum of a random number of exponentially distributed time 
intervals is itself exponentially distributed. 	 (28) 

What we mean by a "fast" reaction depends entirely on the time resolution of the experiment 
as well as on the rates of other steps in the mechanism. What is fast in one context may be 
slow in another; further examples are given by Colquhoun and Hawkes (1994). 

4. A Mechanism with More Than One Shut State: The Simple Open 
Ion Channel-Block Mechanism 

The two-state mechanism in equation 1 is simple because it is possible to tell which of 
the two states the system is in at any moment simply by inspecting the experimental record 
(though, in practice, complications would arise if more than one channel were contributing 
to the recording; see Section 8). In most cases of practical interest, there are likely to be 
several (experimentally indistinguishable) shut states, and possibly more than one open state 
too (see, for example, Section 13). It may be noted that, insofar as there will usually be 
more shut states than open ones, the distributions of shut periods are potentially far more 
informative than the distributions of open times. A simple example of a mechanism with 
two shut states is now considered in some detail. 

4.1. A Simple Ion Channel-Block Mechanism 

Consider the following simple mechanism (Armstrong, 1971; Adams, 1976) for ion 
channel block, which assumes that agonist binding is much faster than the open—shut reaction, 
as discussed in Section 3.5 (this is unlikely to be true, at least for the muscle nicotinic receptor). 

R' 	k+B 
Shut Open Blocked. 	 (29) 

k_B 

State number: 
	

3 	1 	2 

In this mechanism, the transition rate from open to blocked states is Ic+B.x8, where xB  is the 
concentration of the blocking molecule. In this example, there are two shut states (shut and 
blocked). Neither of the shut states conducts any current, so it is not possible to tell for 
certain which of the two shut states the system is in at any moment simply by looking at 
the experimental record. This makes matters more complicated. 

4.2. Relaxation and Noise 

In this example, there are k = 3 states, so it would be expected that relaxations and noise 
experiments would be described by the sum of two components (exponential or Lorentzian, 
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respectively) with rate constants denoted X1  and X2. The following results can be derived as 
described by Colquhoun and Hawkes (1977). 

Although it is often convenient to derive results in terms of the rate constants X1  and 
X2, it is preferable, whenever possible, to refer to the time constants, 'r1  = 1/X i  and T2  = 1/ 
X2  (as used in equation 4). There are two reasons for this. First, it avoids confusion between 
the fundamental rate constants in the mechanism (k_ 1, etc), and the derived or observed rate 
constants, X. Each of the observed rate constants depends on all of the fundamental rate 
constants. These components are easy to observe in the case of some channel-blocking drugs, 
as illustrated in Fig. 3. Second, it is easier to think in terms of time rather than frequency. 

In this case, we find the two rate constants to be the solutions of the quadratic equation 

where 

X2 +bX+ c= 0  

—b = + X2  = a + (31  + k+BxB k_B 

Rxglc = X2  = ak_ B[1 + 	11 + 
Kg 

(30)  

(31)  

a 

30nA 

30ms 

b 

30nA 

 

    

30 ms 

Figure 3. a and b: Endplate currents at —130 mV (dots) evoked by nerve stimulation (inward current is 
shown downward). a: Control, fitted with single exponential (T = 7.1 ms). b: In presence of 5 p.M gallamine, 
fitted with sum of two exponentials 	= 1.37 and 28.1 ms). c and d: Spectral density (dots) of noise (at 
—100 mV) induced by carbachol. c: Carbachol (20 p.M), fitted with single Lorentzian (T = 3.47 ms) d: 
Carbachol (100 p.M) in presence of gallamine (20 p.M), fitted with sum of two Lorentzians (T = 0.65 ms 
and 7.28 ms). Reproduced from Colquhoun and Sheridan (1981), with permission. 
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and KB  = k_B/k+B  is the equilibrium constant for blocker binding. The relative amplitudes 
of the two components are also related to the reaction rate constants, though in a rather 
complicated way (see Colquhoun and Hawkes, 1977; Chapter 20, this volume). 

4.3. Open Lifetimes of Single Channels 

By contrast with noise or relaxation, the analysis of open times for single channels is 
very simple in this case. There is only one open state, and it is identifiable on the experimental 
record. By virtue of the rule given in expression 24, the open lifetime must therefore be 
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and KB = LBlk+B is the equilibrium constant for blocker binding. The relative amplitudes 
of the two components are also related to the reaction rate constants, though in a rather 
complicated way (see Colquhoun and Hawkes, 1977; Chapter 20, this volume). 

4.3. Open Lifetimes of Single Channels 

By contrast with noise or relaxation, the analysis of open times for single channels is 
very simple in this case. There is only one open state, and it is identifiable on the experimental 
record. By virtue of the rule given in expression 24, the open lifetime must therefore be 
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distributed exponentially with mean 1/(a + k+BxB). This follows from expression 24 because 
there are two ways out of the open state (shutting or blocking) with transition rates a and 
k+BxB, respectively. 

4.4. Shut Lifetimes of Single Channels 

Because there are two indistinguishable shut states, this is not as simple as previous 
cases. However, in this particular mechanism, the two shut states cannot intercommunicate 
directly but only by going through the open state. This makes matters much simpler than 
they would otherwise be, because each period for which the channel is shut must consist 
either of a single sojourn in the shut state (exponentially distributed with mean 1/(3') or of 
a single sojourn in the blocked state (exponentially distributed with mean 1/k_ B). The overall 
distribution of shut times is therefore simply a mixture of these two distributions in proportions 
dictated by the relative frequency of sojourns in the shut and blocked states (as long as 
only one channel contributes to the observations; see Section 8). These frequencies will be 
proportional to a and k+BxB, respectively, because these rate constants give the relative 
frequencies (probabilities) with which each of the two shut states is entered, starting from 
the open state. Thus, the pdf of all shut times can be put into the general form of a mixture 
of (in this case) two exponentials (see equation 25), as 

f(t) = 	+ a2k_ Be-k-B` 

where the areas of the two components are 

k 
al 	

+ k+BxB 
  and a2  

a +

+BxB  

k+BxB 
(32) 

4.5. Bursts of Openings 

If the agonist concentration is low ((3' is low), openings are infrequent, and if the blocker 
dissociates quite rapidly from the open channel (k_ B  is large), blockages are brief. In this 
case, openings would be expected to occur in bursts as the channel blocks and unblocks 
several times in quick succession before entering a long shut period. This has been observed 
in many cases (e.g., Neher and Steinbach, 1978; Ogden et al., 1981) and is illustrated in 
Fig. 4. 

The burst-like appearance is just the single-channel equivalent of a double-exponential 
relaxation, as illustrated in Fig. 5 (compare Fig. 2, in which a simple exponentially distributed 
open lifetime gave rise to a simple exponential relaxation). But not all channel blockers will 
produce such obvious effects, as discussed next. 

4.5.1. Fast Channel Blockers 

Some low-affinity blockers produce very brief blockages (e.g., about 20 µs for acetylcho-
line itself on nicotinic receptors; Ogden and Colquhoun, 1985). They therefore have noticeable 
effects only at high concentrations, at which blockages are very frequent. Bursts will consist 
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Figure 4. Channel blockage at the single-channel level, illustrated by the block of NMDA-type glutamate 
receptor channels by magnesium ions. The control trace in A shows openings of an NMDA receptor in the 
absence of magnesium (30 nM glutamate and I µM glycine in calcium-free EDTA-buffered solution, with 
free Mg' about 0.2 p.M; see Gibb and Colquhoun, 1992). The trace in B was obtained in the presence of 
25 11M free Mg2+ (EDTA-buffered solution, 100 nM glutamate). Despite the complexity of the shut-time 
structure even in the absence of magnesium, the effect of channel blockage is very obvious. The channel 
openings in B are much shorter on average (so filtering prevents most of them from attaining full amplitude) 
and are frequently interrupted by brief blockages. Filtered at 3 kHz (-3 dB). (Unpublished results of A. J. 
Gibb on dissociated adult rat hippocampal CA 1 cells.) 

of a large number of very short openings (k+BxB  is large) separated by very short blockages 
(k_ B  is large). Most of these are too brief to be clearly resolved, so the bursts look like single 
noisy openings of reduced amplitude. According to mechanism 29, we would expect to see 
only the slow component of the biphasic relaxation (see Fig. 5), which corresponds roughly 
to the burst length (see below). Such blockers would appear to slow down the relaxation. 
(In the case of very brief interruptions that occur with agonist alone, it is also true that the 
relaxation will be approximately exponential, with a time constant similar to the mean burst 
length; see Section 5 and Fig. 8.) 

4.5.2. Slow Blockers 

At the other extreme, some blockers produce very long blockages, e.g., tubocurarine 
on nicotinic receptors, with mean blockage durations of seconds (Colquhoun et al., 1979). 
Such blockers will appear to speed up the relaxation. At the single-channel level individual 
openings will be shortened on average, as described below, but if, following the opening, 
there is a blockage that lasts for 3 s, it would be impossible to tell by looking at the record 
that the opening before the blockage and that after it were both part of one very long burst. 
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Figure 5. Schematic illustration to show why the occurrence of channel openings in bursts may result in 
biphasic relaxations (like, for example, that illustrated in Fig. 3b). The open state is shown as a downward 
deflection. a: Simulated behavior of seven individual ion channels in the presence of an ion-channel-blocking 
drug. Channels are supposed to be opened nearly synchronously at time zero by a quantum of acetylcholine, 
and the acetylcholine is supposed to disappear rapidly from the synaptic cleft. Thus, each channel produced 
only one burst of openings before it finally shuts (as marked on channel I, which has two blockages and 
therefore three openings before it shuts). b: Sum of all seven records shown in a. The initial decline is rapid 
(time constant TO as open channels become blocked, but the current thereafter declines more slowly (time 
constant TO. The continuous line is the sum of two exponential curves (shown separately as dashed lines) 
with time constants T1 and Tl. The slow time constant, under these conditions, reflects primarily the burst 
length rather than the length of an individual opening. (See also Neher and Steinbach, 1978.) 

At the macroscopic level, the relaxation would reflect only the shortened openings; there 
would in fact be a very slow component too, but it would have such small amplitude that 
it would be undetectable. 

4.6. The Number of Openings per Burst 

The number of openings per burst will, of course, be a random variable. Its distribution 
can be found as follows. Define as 11-12  the probability that an open channel (state 1) will, 
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Figure S. Schematic illustration to show why the occurrence of channel openings in bursts may result in 
biphasic relaxations (like, for example, that illustrated in Fig. 3b). The open state is shown as a downward 
deflection. a: Simulated behavior of seven individual ion channels in the presence of an ion-channel-blocking 
drug. Channels are supposed to be opened nearly synchronously at time zero by a quantum of acetylcholine, 
and the acetylcholine is supposed to disappear rapidly from the synaptic cleft. Thus, each channel produced 
only one burst of openings before it finally shuts (as marked on channel I, which has two blockages and 
therefore three openings before it shuts). b: Sum of all seven records shown in a. The initial decline is rapid 
(time constant Tf) as open channels become blocked, but the current thereafter declines more slowly (time 
constant Ts). The continuous line is the sum of two exponential curves (shown separately as dashed lines) 
with time constants Tf and Ts. The slow time constant, under these conditions, reflects primarily the burst 
length rather than the length of an individual opening. (See also Neher and Steinbach, 1978.) 

At the macroscopic level, the relaxation would reflect only the shortened openings; there 
would in fact be a very slow component too, but it would have such small amplitude that 
it would be undetectable. 

4.6. The Number of Openings per Burst 

The number of openings per burst will, of course, be a random variable. Its distribution 
can be found as follows. Define as 1T12 the probability that an open channel (state 1) will, 
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as its next transition, become blocked (state 2). This probability takes no account of how 
much time elapses before the transition occurs but only of where the transition leads when 
it eventually does occur. It therefore depends simply on the rate of transition from state 1 
to state 2, lc±BxB; this rate must be divided by the sum of all rates for leaving state 1 so that 
the probabilities add to unity. Thus, we obtain 

712 = 
k+ B X8 

(33)  
a + k+BxB  

which is precisely what was used in equation 32 to define the relative frequency of entry 
into each shut state. If the open channel does not block next, the only other possibility is 
that it shuts next, so the probability that the next transition of the open channel is to the shut 
state (state 3) is 

713 = 1  — 712 + k+BxB  

We shall also need the probability that the next transition of the blocked channel is to the 
open state. In this particular mechanism, equation 29, there is nowhere else the blocked 
channel can go, so 

721 = 1 	 (35) 

The probability that a burst has only one opening is simply the probability that the 
channel, once open, then shuts, i.e., 7r13. If the burst has two openings (and therefore one 
blockage), the open channel first blocks (probability 712), then reopens (probability 721), 
and finally shuts (probability 713). So the overall probability of seeing two openings is the 
product of these three probabilities, i.e., T (I IT \ -12-21) -13. Extension of this argument gives the 
probability of a burst having r openings (and r — 1 blockages) as 

	

P(r) = (712720' 17 13 = (712720r-1( 1  — 712). 
	(r = 1, 2, ... , co) 	(36) 

This form of distribution is called a geometric distribution. The cumulative form of this 
distribution, the probability that we observe n or more openings per burst, is 

	

P(r n) = (Trigrzir l 	 (37) 

The mean number of openings per burst (denoted mr) is 

mr 	rP(r) = 	— 1 +1
IT12 	a r=1 

	 1 	k+exB 	
(38) 

This last result predicts that the mean number of openings per burst should increase linearly 
with the blocker concentration, with slope k+B/a. 

The number of blockages per unit open time is predicted to be simply Ic+Bx13, so a plot 

a 
(34)  
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as its next transition, become blocked (state 2). This probability takes no account of how 
much time elapses before the transition occurs but only of where the transition leads when 
it eventually does occur. It therefore depends simply on the rate of transition from state 1 
to state 2, k+sXB; this rate must be divided by the sum of all rates for leaving state 1 so that 
the probabilities add to unity. Thus, we obtain 

(33) 

which is precisely what was used in equation 32 to define the relative frequency of entry 
into each shut state. If the open channel does not block next, the only other possibility is 
that it shuts next, so the probability that the next transition of the open channel is to the shut 
state (state 3) is 

(34) 

We shall also need the probability that the next transition of the blocked channel is to the 
open state. In this particular mechanism, equation 29, there is nowhere else the blocked 
channel can go, so 

(35) 

The probability that a burst has only one opening is simply the probability that the 
channel, once open, then shuts, i.e., 1T13. If the burst has two openings (and therefore one 
blockage), the open channel first blocks (probability 1T12), then reopens (probability 1T21), 

and finally shuts (probability 1T13). So the overall probability of seeing two openings is the 
product of these three probabilities, i.e., (1T121T2d1T13. Extension of this argument gives the 
probability of a burst having r openings (and r - 1 blockages) as 

(r = 1,2, ... , 00) (36) 

This form of distribution is called a geometric distribution. The cumulative form of this 
distribution, the probability that we observe n or more openings per burst, is 

(37) 

The mean number of openings per burst (denoted mr) is 

~ 1 k+BXB 
mr = £.J rP(r) = = 1 + --

r=l 1 - 1T12 a 
(38) 

This last result predicts that the mean number of openings per burst should increase linearly 
with the blocker concentration, with slope k+B/a. 

The number of blockages per unit open time is predicted to be simply k+sXB, so a plot 
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of the observed blockage frequency against 44  should go through the origin and have a slope 
of k+B. This behaviour has been observed directly in some cases, as illustrated in Fig. 6. 

The geometric distribution is the discrete equivalent of the exponential distribution. It 
has the characteristic that a given increment in r reduces P(r) by a constant factor (viz. 
Tr121T21), which is analogous to the behaviour of an exponential. And when in, is large, the 
geometric distribution is well approximated by an exponential distribution with mean mr. 
More generally, we expect that, under conditions where distributions of time intervals are 
described by a mixture of exponentials (see equation 25), the distributions of quantities such 
as the number of openings per burst (which can adopt only discrete integer values) will be 
described by a mixture of geometric distributions (see also Chapter 19, this volume). The 
number of geometric components in the distribution of the number of openings per burst is 
determined by the number of routes between open states and short-lived shut states (see 
Section 13.4) and is therefore not more than the number of open states (see also Chapter 
20, this volume; Colquhoun and Hawkes, 1982, 1987). 

4.7. Lifetime of Various States and Compound States 

From the rule obtained earlier, in equation 24, we can immediately obtain the distribution 
of lifetimes in the three individual states. These will be exponentially distributed with 

Mean open lifetime: mo  = 1/ (et + k+BxB) (39)  

Mean blocked lifetime (gap within a burst): 	1/k_o  (40)  

Mean shut lifetime (gap between bursts): mb  = 1/(3' (41)  

Thus, if bursts can clearly be distinguished in the observed record, we can, for example, 
obtain an estimate of k_B  simply by measuring the mean length of gaps within bursts. The 
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number of geometric components in the distribution of the number of openings per burst is 
determined by the number of routes between open states and short-lived shut states (see 
Section 13.4) and is therefore not more than the number of open states (see also Chapter 
20, this volume; Colquhoun and Hawkes, 1982, 1987). 
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division of openings into bursts may be a particularly useful procedure if more than one 
channel is contributing to the experimental record (see Section 8). In this case, it will not 
be known whether a burst originates from the same channel as the previous burst, so the 
lengths of shut times (gaps) between bursts will not be interpretable. Usually, however, it 
will be likely that all openings within a particular burst originate from the same channel, so 
the lengths of gaps within bursts will be interpretable and useful. 

By use of the means in equations 39-41, we can immediately obtain the average value 
for the total open time during a whole burst. It will be the mean number of openings per 
burst, mr  from equation 38, multiplied by the mean length of an opening, mo  from equation 
39. Thus, 

Mean open time per burst = mrmo = (1 + k+BxB/a)(  
k+BXB) 

= 1/a 	 (42) 

Thus, the mean open time per burst is exactly what the mean length of an opening would 
have been if no blocker were present, as was first pointed out by Neher and Steinbach (1978). 
This result seems surprising at first, and it will be discussed again in Section 6. Similarly, 
the total length of time spent in the blocked state per burst (total shut time per burst) is, 
on average, 

Mean shut time per burst = 	— 1)m,„ = 
k+BXB 

 (11 k_ B) = cB I a 
a 

(43) 

where we denote the blocker concentration, normalized with respect to its equilibrium constant 
(KB  = k_B/k+B), as 

CB  = xB/KB 	 (44) 

Addition of equations 42 and 43 gives the mean burst length as 

Mean burst length = 
1 + CB 	

(45) 
a 

as derived by Neher and Steinbach (1978). This is predicted to increase linearly with the 
concentration of blocker. 

We have just obtained means for the durations of various quantities characteristic of 
the burst, but so far we have not mentioned the distribution of these variables. It can be 
shown (see below; Colquhoun and Hawkes, 1982) that the fact that there is only one open 
state implies that the total open time per burst has a simple exponential distribution (with 
mean 1/a as found above). Similarly, the fact that the gaps within bursts are spent in a single 
state (state 2, the blocked state) implies that the total shut time per burst (excluding bursts 
that have no blockages in them) will also have a simple exponential distribution, with the 
overall mean derived in equation 43 divided by the probability that there is at least one 
blockage, which, from equation 37, is P(r 	2) = 1211'21. 

The distribution of the number of openings per burst had one (geometric) component 
because there is only one open state in this example. However, the distribution of the burst 
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will be likely that all openings within a particular burst originate from the same channel, so 
the lengths of gaps within bursts will be interpretable and useful. 
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a 

where we denote the blocker concentration, normalized with respect to its equilibrium constant 
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Addition of equations 42 and 43 gives the mean burst length as 

1 + Cs 
Mean burst length = -

a 

(44) 

(45) 

as derived by Neher and Steinbach (1978). This is predicted to increase linearly with the 
concentration of blocker. 

We have just obtained means for the durations of various quantities characteristic of 
the burst, but so far we have not mentioned the distribution of these variables. It can be 
shown (see below; Colquhoun and Hawkes, 1982) that the fact that there is only one open 
state implies that the total open time per burst has a simple exponential distribution (with 
mean 110. as found above). Similarly, the fact that the gaps within bursts are spent in a single 
state (state 2, the blocked state) implies that the total shut time per burst (excluding bursts 
that have no blockages in them) will also have a simple exponential distribution, with the 
overall mean derived in equation 43 divided by the probability that there is at least one 
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The distribution of the number of openings per burst had one (geometric) component 
because there is only one open state in this example. However, the distribution of the burst 
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length will be described by the sum of two exponential terms (because the burst is a period 
of time spent in either of two states, open or blocked). This distribution can be derived 
as follows. 

4.8. Derivation of Burst Length Distribution for the Channel-Block 
Mechanism 

We note that a burst consists of a sojourn in either of two states, open or blocked. As 
soon as the shut state (see equation 29) is entered, the burst ends. Thus, we want to find the 
distribution of the time spent oscillating within the pair of burst states (open 	blocked) 
without leaving this pair for the shut state. 

We have already considered one example, the distribution of all shut times, that involved 
a sojourn in a pair of states, but this was unusually simple to deal with because the two shut 
states in question (shut and blocked) could not intercommunicate. In this case, the two states 
of interest (open and blocked) can intercommunicate, so a more general approach is needed; 
a similar approach can be used for many problems that involve a sojourn in a set of two or 
more states. 

The burst starts at the beginning of the first opening and ends at the end of the last 
opening; the channel is open at the start and end of the burst. We have already considered 
in equation 8 a probability defined as 

Pii(t) = Prob(open at time t I open at time 0) 	 (46) 

This is what is needed for derivation of the time course of the macroscopic current or for 
the noise spectrum. However, it is not quite what we need now; this probability allows for 
the possibility that the system may enter any of the other states between 0 and t, but if the 
shut state is entered, the burst is ended, and we are no longer interested. What we need is 
a modified version of this that restricts the system to staying in the burst (i.e., in either open 
or blocked states) throughout the time between 0 and t. This sort of probability will be 
denoted by a prime. Thus, 

Pc i(t) = Prob(stays in burst throughout 0, t and open at t I open at 0) 	(47) 

By analogy with the procedure in Section 3, we start by obtaining an expression for 
1" 1(t + At), the probability that the channel stays within a burst for the whole time from 0 
to t + At and is open at t + At, given that it was open at t = 0. This can happen in either 
of two ways (the probabilities of which must be added): 

1. The channel is open at t [with probability Pl i(t)] and stays open during the interval 
At between t and t + At. The probability that the channel does not stay open during At is 
(a + k+BxB)At + o(At), so the probability that it does stay open during At is 1 — (a + 
k+BxB)At — o(At). 

2. The channel is blocked (state 2) at time t [the probability of this, following the 
notation in equation 8 is 131 2(t)], and the channel unblocks during At [with probability k_B  At 
+ o(At)]. Assembling these values gives our required result as 

Pii(t + At) = Pc 1(0[1 — (a + lc÷B xB)At — o(At)] + Pi 2(t)[lc_ BAt + o(At)] 	(48) 
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Rearrangement of this, followed by allowing At to tend to zero, gives (by the method used 
in equations 17 and 18) 

—  
dt 	

(a + k+Bx13)Pi 1(0 + k-BP;2(t) 

This cannot be solved as it stands because there are two unknowns, /31 1(0 and P12(t). 
However, if an exactly analogous argument to that just given for P1 1(t) is followed for 
P12(t), we obtain another differential equation, 

d13 1(t) 

	

 
dt 	

k+BxePit(t) — k-BP12(t) 

	

- 	 — 
	

(50) 

We now have two simultaneous equations in two unknowns, which can be solved. For 
example, equation 49 can be rearranged to give an expression for P12(t), which is substituted 
into equation 50. In this way, P12(t) is eliminated, and we obtain a single (second-order) 
equation in P11(t) only: 

d 21

dt2

31 1(t) 	dP; I (t)  
+ 
	t(t) 
	+ k+B xB  + k_ B) + ak-sPii(t) = 0 

	
(51) 

Standard methods give the solution of this as the sum of two exponential terms with rate 
constants X1  and X2: 

Pi i(t) = 	
1 	

[(k_B  — X i )exp(— X i t) + (X.2  — k_B)exp(—X2t)1 	(52) 
K2 — Xi 

The two rate constants, A l  and X2, are found by solution of the quadratic equation, 

x2  + bX + c = 0 

where 

—b = X i  + X2 — a + k+BxB + k-B 

c = XI X2  = ak_B 	 (53) 

The pdf for the burst length follows directly from this. It is defined as 

f(t) = lim [Prob(burst lasts from 0 to t and leaves burst in t, t + At)I At] 	(54) 
.6,t---0 

In this case, the burst can be left only by direct transition from the open state to the shut 
state; the blocked state cannot shut directly, so there is no possibility of an experimentally 
invisible period in the blocked state following the last opening (cf. the example in Section 
5). The probability that the burst is left in t, t + At is simply aAt + o(At), conditional on 
the burst lasting from 0 to t and being in open state 1 at t. Insertion of this into equation 54 gives 

dP; 1 (t) 
(49) 
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(51) 

Standard methods give the solution of this as the sum of two exponential terms with rate 
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The two rate constants, Al and A2, are found by solution of the quadratic equation, 

A2 + bA + C = 0 

where 

(53) 

The pdf for the burst length follows directly from this. It is defined as 
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6.1--;0 

In this case, the burst can be left only by direct transition from the open state to the shut 
state; the blocked state cannot shut directly, so there is no possibility of an experimentally 
invisible period in the blocked state following the last opening (cf. the example in Section 
5). The probability that the burst is left in t, t + fl.t is simply exfl.t + o(fl.t), conditional on 
the burst lasting from 0 to t and being in open state 1 at t. Insertion of this into equation 54 gives 
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f(t) = lim {P; i (t)[aAt + o(6a)]1.6d) = od3; 1(t) 
At->0 

where P; i (t) is given by equation 52. Thus, the final form of the distribution 
length is, in the standard form specified in equation 25, 

f(t) = aixie-xit + a2X2e-kv 

where the areas of the two components are 

— a(E B  — X1) 	 a(X2 	k-B) 

(55)  

of the burst 

(56)  

(57)  

(58)  

a l  
X1(X2 

The mean burst length follows from 

= 

— and 	a 2 
X1) 	 X2(X2 	X1) 

cc 
= —

al + a2 _ (1 + CB) 
fm = 	tf(t)dt 

Xt 	X2 	a 

which agrees with the result already found in equation 45 by a different route. 
Two things are noteworthy about this distribution. (1) Unlike the simple case in which 

states do not intercommunicate, which was exemplified in equation 32, the two rate constants 
defined by equation 53 are compound quantities with no exact physical significance. (2) The 
two rate constants found here are not the same as those found for noise and relaxation 
experiments, as given in equations 30 and 31. The present versions are simpler because they 
do not involve rate constants that are concerned only with transitions from states outside the 
burst; i.e., they do not involve 13' in this case. However, if few channels are open (R' is 
small), the rate constants for noise and relaxation, from equation 31, will become similar to 
those for the burst length distribution, from equation 53. 

5. A Simple Agonist Mechanism 

The mechanism of Castillo and Katz (1957), which has already been discussed in 
Sections 1.1 and 3.5, also has, like that just discussed, two shut states and one open state. 
However, in this case, the two shut states can intercommunicate directly. It will be convenient 
to number the three states thus 

k_, 
	AR 		 AR* 
	

(59) 

State Number 	 3 	2 	1 

5.1. Shut Times 

This mechanism can be analyzed in much the same way as the channel-block mechanism. 
In this case, because the two shut states intercommunicate, the distribution of all shut periods, 
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f(t) = lim {P;l(t)[a~t + o(~t)l/~t} = aP;l(t) (55) 
II.t-->O 

where P; I(t) is given by equation 52. Thus, the final form of the distribution of the burst 
length is, in the standard form specified in equation 25, 

(56) 

where the areas of the two components are 

and (57) 

The mean burst length follows from 

(58) 
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although it will still have two exponential terms, will not have rate constants that have a 
simple physical significance. The rate constants must be found by solving a quadratic as in 
equation 53. The derivation follows the same lines as that for the distribution of the burst 
length and is given in full by Colquhoun and Hawkes (1994), so it will not be repeated here. 

5.2. Bursts of Openings 

Again, openings are predicted to occur in bursts, in this case bursts of several openings 
during a single occupancy (i.e., oscillation between AR and AR* before final dissociation). 
The bursts will be obvious as long as the time spent in AR, on average l/q3 + k_1 ) from 
rule 24, is short compared with the time between bursts. The distribution of the gap between 
bursts will be complicated by the fact that repeated occupancies (R # AR) may take place 
before a burst starts, and the gap between bursts will also include the time spent in AR 
immediately before the first opening of the burst and immediately after the last opening, as 
illustrated in Fig. 7. 

The distribution of the number of openings per burst is geometric (as in Section 4.6), 
with mean, mr, given by 

in, = 1  + (P/k-1) 	 (60) 

The openings have mean length 1/a, so the mean open time per burst is therefore ni)a. Each 
burst will contain, on average, (m,. — 1) brief shuttings, each of mean length 1413 + k_ 1 ), 
giving a mean total shut time per burst of (m, — 1)/((3 + k_1). The mean burst length will 
be the sum of these two quantities. 

The distribution of the burst length can be found, much as in the channel-block example 
(Section 4.8), by deriving an expression for P' 11(t). The way that the burst ends is rather 
different in this case, however; it cannot end (reach state 3) directly from the open state but 
only via AR. Therefore P` 11(0 must be multiplied not only by the transition rate from AR* 
to AR, i.e., by a, as in equation 55, but also by the probability that, once in AR, the burst 
ends rather than continues, i.e., Tr23  = k_ 1 /(( + k_ 1 ). 

The openings of many sorts of ion channel are observed to occur in bursts, as illustrated 

Figure 7. Schematic illustration of transitions between various states (top) and observed single-channel 
currents (bottom) for the simple agonist mechanism in equation 59. This illustrates the molecular events that 
underlie a burst of openings. 

Stochastic Interpretation of Mechanisms 421 

although it will still have two exponential terms, will not have rate constants that have a 
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underlie a burst of openings. 



422 
	

David Colquhoun and Alan G. Hawkes 

in Fig. 8 for the nicotinic acetylcholine receptor. Such observations have been interpreted 
along the lines suggested above, though a somewhat more complex mechanism than 59 is 
needed, as discussed in Sections 11 and 13; Chapter 20, this volume; Colquhoun and Hawkes, 
1994; see, for example, Colquhoun and Sakmann, 1985; Sine and Steinbach, 1986). 

5.3. Effective Openings 

If the resolution of the experiment is poor, few of the brief shuttings, of the sort shown 
in Fig. 8 will be detected, and the bursts will appear to be single openings (see Section 12), 
with mean length equal to the burst length. When the shut times within bursts are short, the 
mean length of this "effective opening" will be little different from the total open time per 
burst, mrla, i.e., from equation 60, 

Mean open time per burst = —
1 

 
(1 + 13— 

a 
(61) 

Furthermore, by virtue of equation 28, the duration of the "effective opening" will be 
approximately a single exponential with this mean. 

	1 
5 ms 

Figure 8. Example of bursts of channel openings elicited by an agonist. The upper trace shows four bursts 
of openings elicited by acetylcholine (100 nM, adult frog endplate, filter 2.5 kHz —3 dB; unpublished data 
of D. Colquhoun and B. Sakmann, methods as in Colquhoun and Sakmann, 1985). The last burst appears 
to consist of a single short opening, but the other three contain at least two or three openings separated by 
short shut periods. The lower section shows the first burst on an expanded time scale. It contains one fully 
resolved shut period and a partially resolved shutting. On the assumption that the partially resolved event is 
indeed a complete closure, time-course fitting (see Chapter 19, this volume) suggests that the burst contains 
three openings (durations 10.7 ms 1.0 ms and 5.7 ms) separated by two closed periods (durations 61 tis and 
289 [Ls). 
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If a channel-blocking agent is added to the mechanism in equation 59, there will now 
be three shut states rather than two. If the channel blockages are, on average, much longer 
than the spontaneous brief shuttings just discussed, then each activation of the channel can 
be considered as a cluster of openings, the bursts within a cluster being separated by channel 
blockages, and the openings within a burst being separated by spontaneous brief shuttings. 
The formal theory of clusters of bursts was presented by Colquhoun and Hawkes (1982). 
This theory was used by Ogden and Colquhoun (1985) to show that, in the case where the 
spontaneous brief shuttings cannot be resolved, the whole burst will behave approximately 
like a single "effective opening," and application of the simple channel-block theory given 
in Section 4 will not give rise to serious errors. For example, the mean length of the effective 
opening will be reduced by the presence of a channel blocker in the same way as the mean 
length of the actual openings is reduced. 

5.4. Macroscopic Currents 

When the gaps within bursts are brief, noise and relaxation experiments will give a 
time constant that corresponds approximately to the mean burst length (rather than the mean 
open time). This can be shown as follows. 

The two macroscopic rate constants are found, as usual, by solving a quadratic equation, 

+ bX + c = 0. 

The well-known solution of this quadratic is 

X1, X2 = 0.5(—b ,/b2  — 4c) 

A less well-known alternative is 

X1, X2 = 
—b 	— 4c 

where, as before, 

—b = 	+ X2, 	c = XiX2 

When one of the rate constants is much bigger than the other (say Xf  > Xs, where the subscripts 
denote fast and slow), i.e., when b2  > c, then the faster rate constant, Xf, is approximately 

Xf  ~ —b 	 (65) 

and, from the alternative form, equation 63, the slower rate constant, X, is approximately 

Xs  ~ —clb 
	

(66) 

In this case the coefficients are given (e.g., Colquhoun and Hawkes, 1977) by 

—b = Xs  + Xf  = ± + k+i xA  + k_, 	 (67) 

2c 

(62)  

(63)  

(64)  
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c = XsXf  = ak_ 1  [1 + 
XA  (Ot 	(3)] 
KA  a 

= alc_ i  + ak.„ I xA  + 131c+I xA 	 (68) 

where KA  is the microscopic equilibrium constant for the binding reaction, i.e., k_ 1 /141 . 
When the shut times within bursts are very short, only the slower of these components will be 
detectable, and the time constant for this component will, from equation 66, be approximately 

Ts  = 1/Xs  — 
a + + k+IxA + k_1  

  

ak_ 1  + ak+ I xA + Pk+ixA 

 

 

1 
—(1 + 

k_ I  

 

(69) 

The second approximation is valid (1) when the agonist concentration, xA, is sufficiently 
low, and (2) when the shut times within bursts, with mean length 1413 + k_1 ), are short 
enough that ((3 + k_ 1 )> a. The result in equation 69 is seen to be the mean open time per burst, 
as found in equation 61, i.e., approximately the mean burst length. Several approximations had 
to be made to get this result; this illustrates the general principle that there is usually no 
simple correspondence between the time constants for macroscopic currents and the time 
constants for the single-channel distributions. 

This topic is discussed further in Sections 11 and 13 (see also Chapter 20, this volume; 
Colquhoun and Hawkes, 1981, 1982, 1994). 

6. Some Fallacies and Paradoxes 

The random nature of single-channel events leads to behaviour that is often not what 
might, at first sight, be expected intuitively. Some examples of apparently paradoxical behav-
iour and of common fallacies are now discussed. 

6.1. The Waiting Time Paradox 

This is most easily illustrated by consideration of a simple binding reaction 

R 
k 1  

AR 
k_1 

State number: 
	 2 	1 

Imagine that the receptors (R) have attained equilibrium with a concentration xA  of the ligand 
(A). The fraction of receptors that are occupied (or the fraction of time for which a particular 
receptor is occupied) will be p1 (co) = xA/(xA  + KA), where KA  = k_ 1lk+1. Suppose that at 
an arbitrary moment, t = 0, the ligand concentration is reduced to zero. We should expect 
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to see a simple exponential decline in receptor occupancy with a time constant 1/k_ I  (though 
in practice diffusion problems usually preclude such simplicity). This, of course, would be 
interpreted (see Fig. 2) in stochastic terms by pointing out that the length of time for which 
a particular receptor remains occupied is exponentially distributed with a mean of 1/k_ 1 , 
from rule 24. 

However, it might be objected that a receptor that is occupied at the arbitrary moment 
t = 0 must already have been occupied for some time before t = 0, and what we measure 
in the experiment is the residual lifetime of the occupied state from t = 0 until dissociation 
eventually occurs, as illustrated in Fig. 9. Because the mean lifetime of the entire occupancy, 
measured from the moment the receptor becomes occupied to the moment of dissociation, 
is on average 1/k_ i, surely this residual lifetime should be shorter! On the other hand, since 
the drug-receptor complex does not 'age'—i.e., it has no knowledge of how long it has 
already existed—the mean lifetime measured from any arbitrary moment must always be 1/ 
k_1 . Both of these arguments sound quite convincing, but the latter argument is the correct one. 

The resolution of the paradox lies in the fact that we are looking, in the experiment, 
only at those drug–receptor complexes that happened to exist at the moment, t = 0, when 
we chose suddenly to reduce the ligand concentration to zero (no more complexes can form 
after this moment). These particular complexes will not be typical of all drug–receptor 
complexes: we have a greater chance of catching in existence long-lived complexes than 
short-lived ones. This happens because of a phenomenon known as length-biased sampling. 
Although complexes with above-average lifetimes are fewer in number than those with below-
average lifetimes (because of the positive skew of the exponential distribution), the former 
actually occupy a greater proportion of the total time than the latter. The above-average 
lifetimes have, therefore, a greater probability of being caught in existence at an arbitrary 
moment. Although the mean length of all occupancies is 1/k_1 , the mean lifetime of the 
particular complexes that are in existence at t = 0 is twice as long, 2/k_ 1 . These complexes 
will, on average, have been in existence for a time 1 /k_ i  before t = 0 and for a time 1/k_ i  
(the residual lifetime) after t = 0. The paradox is resolved. Further details can be found, for 
example, in Feller (1966) or Colquhoun (1971, Chapter 5 and Appendix 2). 

Iigond present 	--044i  ligond absent from solution* 
tf0 

occupied 	  
I vacant  I.-lifetime 

2 Figure 9. Illustration of the waiting time paradox. (a) 
Simulated behavior of six individual receptors. Before 	3 
t = 0, ligand is present, and the receptor becomes 4 
occupied and vacant at random. The average lifetime 
of an occupancy is 1/k_ 1  (where k_ 1  is the dissociation 	5 
rate constant). At t = 0, the ligand is removed from 	6 
solution, and receptors that were occupied at t = 0 
dissociate after a variable length of time. (b) The total 	Ibl 

of the records in a, showing the time course of decline 
of occupancy. The time course clearly reflects the 
distribution of the residual lifetime (defined on chan-
nel 1), which tums out to be identical with the distribu-
tion of the total lifetime (also defined on channel 1). 
Both are exponentially distributed with mean 1 /k_ 1 . 
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6.2. The Unblocked Channel Fallacy 

Consider the simple channel-block mechanism of equation 29. In the absence of the 
blocking drug, the mean length of an opening would be 1/a. It was found above that in the 
presence of the blocker in concentration xB, the mean length of an individual opening is 
reduced to 1/(a + k+BxB). The easiest way to imagine why the opening is, on average, shorter 
is to suppose that its normal lifetime is cut short by a blocking molecule, which causes it 
to cease conducting prematurely (before it would otherwise have shut). But not every opening 
is ended by a blockage. The number of blockages per burst is a random variable, and a 
certain number of openings will end in the normal way, by transition to the shut state, rather 
than by the channel being blocked. This will be true of openings that have no blockage, so 
there is only one opening in the burst (and, more generally, for the last opening in any burst). 
Surely, these openings, which have not been cut short by a blockage, must be perfectly 
normal, with a mean lifetime 1/a. 

On this basis, it is sometimes suggested, for example, that the noise spectrum should 
contain a component with the normal time constant (1/a), which corresponds to those channels 
that do not block. However, this is quite inconsistent with rule 24, which states that because 
there is only one open state, its lifetime must follow a simple exponential distribution with 
a mean, in this example, of 1/(a + k+BxB)• There should be no component with mean 1/a. 
In fact, if openings that end by shutting in the normal way rather than by blocking (e.g., 
bursts with only one opening) were measured separately from all other openings, it would 
be found that their duration was a simple exponential with mean 1/(a + k+BxB); they are 
shorter than "normal" even though no blockage has occurred. The reason is again connected 
with length-biased sampling. Openings that happen to be very long will tend to get blocked 
before they shut, so, conversely, the openings that happen to be short (less than 1/a) will 
predominate among those that have no blockage. The extent to which these are shorter than 
1/a turns out, with great elegance, to be precisely sufficient to make their mean lifetime 
1/(a + k+BxB), exactly the same as that for openings that are terminated by being blocked. 

6.3. The Last Opening of a Burst Fallacy 

There are a number of other fallacies that can be disposed of easily by rule 24, which 
gives the distribution of the length of time spent in a single state. The explanation is, as in 
the last example, usually based on length-biased sampling. For example, the simple agonist 
mechanism, equation 59 predicts that openings should occur in bursts. The average length 
of an opening should be 1/a regardless of where it occurs in the burst as long as there is 
only one open state (though if there is more than one open state, this may no longer be true; 
see below). According to mechanism 59, the agonist cannot dissociate from the open channel. 
If it were able to, it might be thought that this dissociation would end the burst and would 
cut short the lifetime of the last opening in the burst. Thus, might it be possible to test the 
hypothesis that the agonist can dissociate from the open state by seeing whether the last 
opening of the burst has a different distribution from the others? If there is only one open 
state, clearly this would not be possible. It is true that if a channel could shut by another 
route as well as that shown in equation 59, the mean lifetime of the open state would be 
reduced to something less than 1/a. But all openings regardless of position in the burst would 
have, on average, this same reduced lifetime. 
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6.4. The Total Open Time per Burst Paradox 

It was pointed out earlier, in equation 42, that for the simple channel-block mechanism, 
the total time per burst that is spent in the open state will be, on average, 1/a. This is exactly 
what the mean open time would be in the absence of a blocker (a fact that, incidentally, 
explains the inefficiency of channel block in reducing the equilibrium current when the 
agonist concentration is low). How can this happen? The channel cannot 'know' how long 
it has been open earlier in the burst and so make up the total open time to 1/a. After a 
blockage, the channel is not continuing a normal open time (mean length 1/a) but starting 
a new open time [with mean length 1/(a. + k+BxB)]. Clearly, since the mean length of a 
single opening is 1/(ct + k+Bxs), it follows at once that the mean open time per burst for 
bursts with r openings must simply be r/(a + Ic+BxB). The relative proportions of bursts with 
r = 1, 2 	 openings, given by equation 36, must be such that, on average, the total 
open time per burst is 1/a. 

One way of understanding this is as follows (see Colquhoun and Hawkes, 1982). Imagine 
that a clock is started at the beginning of the first opening of a burst; the clock is stopped 
when the channel blocks and restarted when the channel reopens. It is finally stopped at the 
end of the burst, i.e., as soon as the channel shuts (as opposed to blocking). Thus, the clock 
runs only while the channel is open, and when finally stopped, it shows the total open time 
per burst. While the channel is open, the probability that it will leave the open state in At 
is (a + k+BxB)At + o(At), but if it leaves for the blocked state, the clock is stopped only 
temporarily. For the whole time that the clock is running, the probability that the clock is 
stopped finally, i.e., that the channel shuts (as opposed to blocking), in At is aAt + o(At). 
This fact is sufficient to ensure that the time shown when the clock stops finally, the total 
open time per burst, has a simple exponential distribution with mean 1/a; this follows from 
the derivation of the exponential distribution given in Section 3. 

A more general treatment (see Section 13; Chapter 20, this volume; Colquhoun and 
Hawkes, 1982; Neher, 1983) shows that the total open time per burst will be 1/a for any 
mechanism with one open state as long as it fulfills the following condition. Suppose that 
there are any number of short-lived shut states (OA states, say) in which the system stays 
during a gap within a burst, and that there are any number of long-lived shut states (T states, 
say) in which the system stays during a gap between bursts. If the only route from the former 
set of states (03) to the latter (€) is via the open state, and the total transition rate from the 
open state to the T states is a, then the total open time per burst must be, on average, 1/a. 
If, on the other hand, there are routes from M states to T states that do not go through the 
open state (e.g., if the blocked channel can shut without reopening in the channel block 
example), the mean open time per burst must be less than 1/a. 

7. Reversible and Irreversible Mechanisms 

Most reaction mechanisms are such that the system, left to itself, will move spontaneously 
towards a true thermodynamic equilibrium. All the reaction steps in such mechanisms will 
usually be reversible, and the mechanism must obey the principle of microscopic reversibility 
or detailed balance (see Denbigh, 1951). This principle states that at equilibrium, each 
individual reaction step will proceed, on average, at the same rate in each direction. This 
means, for example, that a cyclic reaction mechanism cannot have, at equilibrium, any 
tendency to move predominantly in one direction around the cycle; this has implications for 
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open state (e.g., if the blocked channel can shut without reopening in the channel block 
example), the mean open time per burst must be less than lIa. 
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Most reaction mechanisms are such that the system, left to itself, will move spontaneously 
towards a true thermodynamic equilibrium. All the reaction steps in such mechanisms will 
usually be reversible, and the mechanism must obey the principle of microscopic reversibility 
or detailed balance (see Denbigh, 1951). This principle states that at equilibrium, each 
individual reaction step will proceed, on average, at the same rate in each direction. This 
means, for example, that a cyclic reaction mechanism cannot have, at equilibrium, any 
tendency to move predominantly in one direction around the cycle; this has implications for 
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the form of the distribution of open times (see example below). A slightly more subtle 
consequence of the principle of microscopic reversibility is that it implies that the stochastic 
properties of the mechanism must show time reversibility; they must be, on average, the 
same whether the record is read from left to right or from right to left (see Kelly, 1979). 
One example of such time symmetry is given by Colquhoun and Hawkes (1982), who discuss 
a mechanism in which all openings in a burst have not got the same distribution; these 
distributions are, however, the same for the first and last openings, and for the second and 
next-to-last openings, and so on. Another example is discussed below. 

Reaction mechanisms with irreversible steps, such as that in equation 74 below, do 
not obey the principle of microscopic reversibility and do not tend spontaneously towards 
equilibrium. Such reactions may, however, be maintained in a steady state if they are coupled 
to a source of energy. If a steady state is attained, then all of the distributions derived by 
Colquhoun and Hawkes (1982) are still valid, although time symmetry is not, of course, 
expected. 

7.1. A Simple Example 

Some of the consequences of reversibility and irreversibility can be illustrated by a 
simple example, a cyclic mechanism that has one shut state (C) and two open states (01  and 
02). First consider the possibility that there might be a net clockwise circulation around the 
cycle. To achieve this, we might assign rate constants (all with dimensions s' as follows: 

(70) 

For reversible reactions, however, the principle of microscopic reversibility implies that the 
product of the rate constants going one way around the cycle is the same as the product 
going the other way around. The rate constant for 02  --> 01, which has been omitted from 
scheme 70, must therefore be 2450 s-1. The complete mechanism is thus 

(71) 

Denote the closed state as state 3 and the open states 01  and 02  as states 1 and 2, respectively. 
At equilibrium, the occupancy of each state is 

p1(°) = 0.4851 

P2(x) = 0.0198 

p3(co) = 0.4951 
	

(72) 
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simple example, a cyclic mechanism that has one shut state (C) and two open states (01 and 
O2). First consider the possibility that there might be a net clockwise circulation around the 
cycle. To achieve this, we might assign rate constants (all with dimensions S-I as follows: 

(70) 

For reversible reactions, however, the principle of microscopic reversibility implies that the 
product of the rate constants going one way around the cycle is the same as the product 
going the other way around. The rate constant for O2 ~ 010 which has been omitted from 
scheme 70, must therefore be 2450 S-I. The complete mechanism is thus 

(71) 

Denote the closed state as state 3 and the open states 0 1 and O2 as states 1 and 2, respectively. 
At equilibrium, the occupancy of each state is 

PI(OO) = 0.4851 

P2(oo) = 0.0198 

P3(oo) = 0.4951 (72) 
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Thus, the mean frequency of the 0 	02  transitions, 0.4851 X 100 = 48.51 per second, 
is the same as the mean frequency of the 02  -4 0 transitions, 0.0198 X 2450 = 48.51 per 
second. The same applies to the other two reaction steps. There is no net circulation. 

The rule given in statement 24 shows that the mean lifetime, m, of a sojourn in each 
of the states for reaction 71 is 

m1 = 5 ms 

m2 = 0.4 ms 

m3  = 10 ms 
	

(73) 

In order to provide a contrast to the reversible scheme in reaction 71, consider the case 
in which all transitions are irreversible, and reaction can proceed only clockwise around the 
cycle. Suppose this mechanism is maintained in a steady state by coupling to an energy 
supply, and we choose rate constants for the transitions such that the steady-state occupancies 
are the same as for reaction 71; these are given in equations 72. In this example, the 
occupancies must be proportional to the mean lifetime of each state, so a suitable choice of 
rate constants would be 

C (74) 

02 

There are two interesting respects in which the reversible (71) and irreversible (74) reactions 
can be compared. 

7.2. Distribution of the Lifetime of an Opening 

Suppose that the conductance of the two open states is identical, so they cannot be 
distinguished. The distribution of the duration of an opening for the reversible mechanism 
(71) can be shown (e.g., from equation 3.64 of Colquhoun and Hawkes, 1982) to have a 
probability density function 

f(t) = 97.962e-thi + 1.037e-'72 	 (75) 

where the time constants of the two exponential components are T1 = 10.204 ms and T2  = 
0.384 ms. Notice that the coefficients of both terms are positive so the distribution is a 
monotonically decreasing curve. It has not got a maximum or even a point of inflection (see 
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There are two interesting respects in which the reversible (71) and irreversible (74) reactions 
can be compared. 

7.2. Distribution of the Lifetime of an Opening 

Suppose that the conductance of the two open states is identical, so they cannot be 
distinguished. The distribution of the duration of an opening for the reversible mechanism 
(71) can be shown (e.g., from equation 3.64 of Colquhoun and Hawkes, 1982) to have a 
probability density function 

f(t) = 97.962e-ti7 ] + 1.037e-'i72 (75) 

where the time constants of the two exponential components are 1"1 = 10.204 ms and 1"2 = 
0.384 ms. Notice that the coefficients of both terms are positive so the distribution is a 
monotonically decreasing curve. It has not got a maximum or even a point of inflection (see 
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Fig. 10a). It can be shown that this must always be true, whatever rate constants are inserted 
in equation 71. This result is interesting in connection with observations by Gration et al. 
(1982) of an open-time distribution that appeared to go through a maximum; their result 
seems to be incompatible with any equilibrium reversible reaction mechanism. 

In contrast, the irreversible mechanism (74) must give a steady-state open-time distribu-
tion with a maximum. The opening must always start in state 1 and then proceed through 
state 2 before shutting can occur, so there are few very short openings. The pdf can again 
be found from equation 3.64 of Colquhoun and Hawkes (1982) or, in this case, by analogy 
with equation 91 below. The result for scheme 74 is 

f(t) = 106.34(e-1/T' — e-'2) 	 (76) 

where the time constants, in this case, are simply the mean lifetimes of open states 1 and 2, 
i.e., 9.804 ms and 0.4 ms, respectively. This distribution has a term with a negative sign and 
must go through a maximum (see Fig. 10a), whatever the particular values of rate constants. 
In these examples, the mean open lifetime is 10.2 ms for both reversible (71 and 75) and 
irreversible (74 and 76) cases. 

7.3. Probabilities of Particular Sequences of Transitions when the Open 
States Are Distinguishable 

Let us suppose now that open state 2 has a lower conductance than open state 1, so the 
two states can be distinguished on the experimental record. Such conductance substates have 

Figure 10. Reversible and irre-
versible mechanisms. a: The dashed 
line shows the pdf of the lifetime 
of the open (01  or 02) state for the 
reversible mechanism in equation 
71. The equation for this curve is 
given as equation 75. The fast com-
ponent (T = 0.384 ms) of the distri-
bution is too small in amplitude 
(only 1.04 s -1) to be easily visible. 
The continuous line shows the pdf 
of the lifetime of the open state for 
the irreversible mechanism in equa-
tion 74 which is specified in equa-
tion 76. In this case, the fast 
component (T = 0.4 ms) has a nega-
tive sign, and the pdf goes through 
a maximum (i.e., very short open 
times will rarely be seen). 
b and c: Two possible types of open-
ing for the reversible mechanism in 
equation 71; these will be observ-
able only if the two open states, 01  
and 02, differ in conductance. 
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seems to be incompatible with any equilibrium reversible reaction mechanism. 

In contrast, the irreversible mechanism (74) must give a steady-state open-time distribu
tion with a maximum. The opening must always start in state 1 and then proceed through 
state 2 before shutting can occur, so there are few very short openings. The pdf can again 
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In these examples, the mean open lifetime is 10.2 ms for both reversible (71 and 75) and 
irreversible (74 and 76) cases. 
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now been observed in many sorts of ion channel. Consider, for example, an opening in which 
state 1 is entered first, then state 2, so the sequence of transitions is 3 --> 1 --> 2 -4 3 (see 
Fig. 10c). Contrast this with the sort of openings in which state 2 is entered first, then state 
1, i.e., the sequence 3 	2 —> 1 	3 (see Fig. 10b). These sequences are mirror images of 
each other in time, so the principle of time symmetry discussed above suggests that for any 
reversible mechanism at equilibrium, they should occur equally frequently. 

At first sight, it is not obvious how this can happen for the mechanism in equation 71. 
For this mechanism, it is fairly obvious that any open period has a 98% chance of starting 
in state 1 and only a 2% chance of starting in state 2, because the opening rate constants 
are 98 s' and 2 s' (in general, such probabilities can be found from equation 3.63 of 
Colquhoun and Hawkes, 1982). It is nevertheless true that the above sequences are equally 
probable. This can easily be shown by calculation of the probabilities (rr,, values)' that a 
channel in one state (i) will move next to another (j); this sort of argument has already been 
illustrated in Section 4, equations 33-37. 

Consider first the 1 	2 —> 3 transition. For the values in equation 71, the probability 
that a channel in state 1 will next move to state 2 is 7r12  = 100/(100 + 100) = 0.5, and the 
probability that once in state 2 it will move to state 3 is 1T23  = 50/(50 + 2450) = 0.02 The 
probability of the 1 --> 2 -4 3 sequence is therefore 7r12723  = 0.5 X 0.02 = 0.01. Now the 
probability that the opening starts in state 1 in the first place is 0.98, so a fraction 0.98 x 
0.01, i.e., 0.98%, of all openings will be of the 3 --> 1 --> 2 —> 3 type shown in Fig. 10c. 
Similarly, the probability of a 2 —> 1 —> 3 sequence is IT IT 21 13 = 0.98 X 0.5 = 0.49. However, 
only 2% of openings start in state 2, so a fraction 0.49 X 0.02, i.e., 0.98%, of all openings 
should be of the 3 --> 2 —> 1 —> 3 type shown in Fig. 10b. This is exactly the same fraction 
as for the mirror-image sequence, as predicted. 

There have been some reports of asymmetry in sublevel structure (e.g., Hamill and 
Sakmann, 1981; Cull-Candy and Usowicz, 1987), though the majority of cases where the 
question has been inspected show no sign of asymmetry (e.g., Howe et al., 1991; Gibb and 
Colquhoun, 1992; Stern et al., 1992). The finding of asymmetry suggests that either the 
reaction mechanism is not reversible or that it is not at equilibrium (see, for example, Unger, 
1985; Chapter 23 this volume). Clearly, the flow of ions through an open channel is far from 
equilibrium, so any coupling between ion flow and channel gating could, in principle, give 
rise to asymmetry. 

The conclusion that has just been illustrated is quite general. For a reversible mechanism 
at equilibrium, any sequences that are mirror images in time should be equally frequent, and 
the length of time spent in each of the states should have the same distribution whether the 
record is read from left to right or from right to left. Furthermore, this remains true even 
if each of the experimentally distinguishable states actually consists of any number of 
indistinguishable (equal-conductance) states. 

None of this is, of course, true for an irreversible mechanism. For that shown in reaction 
74, it is clear that every opening will consist of a 3 —> 1 -4 2 —> 3 sequence of transitions. 

8. The Problem of the Number of Channels 

It is clear that, in general, there may well be more than one ion channel in the patch 
of membrane from which a recording is made. This means that one cannot, in general, be 
sure that a particular single channel current in the recording originates from the same 
individual ion channel that produced the previous current pulse. This, in turn, means that 

Stochastic Interpretation of Mechanisms 431 

now been observed in many sorts of ion channel. Consider, for example, an opening in which 
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None of this is, of course, true for an irreversible mechanism. For that shown in reaction 
74, it is clear that every opening will consist of a 3 ~ 1 ~ 2 ~ 3 sequence of transitions. 

8. The Problem of the Number of Channels 

It is clear that, in general, there may well be more than one ion channel in the patch 
of membrane from which a recording is made. This means that one cannot, in general, be 
sure that a particular single channel current in the recording originates from the same 
individual ion channel that produced the previous current pulse. This, in turn, means that 
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the distribution of the length of the shut periods between openings cannot be interpreted 
without knowledge of the number of ion channels that are present. This is very unfortunate 
because, insofar as there will usually be more shut states than open states, the distribution 
of shut times is potentially more informative than the distribution of open times. 

There are at least three things that can be done about this problem: (1) make an estimate 
of the number of channels present and make appropriate allowance if there is more than 
one; (2) use recordings only from patches that have one channel (evidence for this is 
considered below); (3) use only the brief shut periods within a burst of openings, which may 
be interpretable even if interburst intervals are not. It must be said, however, that quite often 
none of these procedures proves to be entirely satisfactory, and lack of knowledge of the 
number of channels continues to be a serious problem. The procedures are now discussed 
in a bit more detail. 

8.1. Estimation of the Number of Channels 

Suppose that there are N independent channels present. The probability that r of those 
channels are open simultaneously should be given by the binomial distribution as 

N!  
P(r) = 

r!(N — r)!
P(S(l 	Po)N r 	(r = 0, 1 . . . , N) (77) 

where Po  is the probability that an individual channel is open (this will, of course, be unknown 
and will be lower than the observed probability of being open, if more than one channel is 
present). In principle, the value of N can be estimated from data by comparing the distribution 
of simultaneously open channels with the predictions of the binomial distribution. The 
estimation of the binomial parameter N is, however, a problem with a notorious reputation 
among statisticians (see Olkin et al., 1981). The problem is discussed critically, in the single-
channel context, by Horn (1991). He compares seven different ways of estimating N on a 
series of simulated data sets with a range of parameter values. 

The simplest estimate of N is just the largest number of simultaneously open channels 
that is seen in the record. Although this sounds crude (it is), other methods that might be 
thought of as more subtle (such as maximum-likelihood estimation of N) will often produce 
much the same answer. The fact is that many sorts of record contain very limited information 
about the size of N, so no method can extract much from them. It is obvious, for example, 
that when a very low agonist concentration is used on a muscle endplate, long records can 
be obtained without any double openings at all despite the fact that the patch contains 
hundreds of channels. In general, it will never be possible to estimate N when the number 
of channels is large and the probability of each being open is small. In this case, the binomial 
distribution approaches a Poisson distribution, and N becomes indeterminate (only the mean, 
Npo, can de determined). (Exactly the same problem arises in the study of quantal transmitter 
release.) In order to have any hope of estimating N, the experiment must be done under 
conditions where Po  is as high as possible (see Horn, 1991). The problem, however, remains 
that pa  is the probability of being open for one channel, and so it cannot be inferred directly 
from a record derived from an unknown number of channels. 

A further problem is that it is possible that the assumptions of the binomial analysis 
are not met. Receptor heterogeneity is a real problem (especially in the central nervous 
system) for this analysis (as well as for many others). There is also a possibility that receptors 
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the distribution of the length of the shut periods between openings cannot be interpreted 
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P( ) N! r(1 )N-r 
r = '(N _ )' Po - Po r. r. 

(r = 0, 1 ... , N) (77) 
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may not always be independent; e.g., the opening of one receptor might influence the opening 
of adjacent receptors. There have been reports of such interactions, for example, Yeramian 
et al. (1986), but most are not as convincing as this one. 

8.2. Evidence for the Presence of Only One Channel 

Obviously, if one or more double openings are seen, there must be more than one 
channel. If, on the other hand, the observed record consists entirely of periods with either 
zero or one channel open, then there may be only one channel present. If there is a channel 
open for most of the time, and yet no double openings are seen, then it is fairly obvious that 
all the openings must come from the same ion channel. This is the basis for determining the 
fraction of time for which an individual channel is open by looking at clusters of channel 
openings at high agonist concentrations (see, for example, Sakmann et al., 1980; Sine and 
Steinbach, 1987; Colquhoun and Ogden, 1988). If, however, much of the time is spent with 
no channels open, it will not be obvious how many channels are present, and some sort of 
statistical test is desirable. Horn (1991) suggests, on the basis of his binomial simulations, 
that if no double openings are seen, and the channel is open for more than about 50% of 
the time, then it is very likely that one channel is present. Some variants on this approach 
will now be discussed. 

8.2.1. A Simple Approximation 

Suppose that (1) channels can exist in two states only, open and shut, as in equation 1, 
that (2) we observe no  single openings but no double openings, and that (3) for most of the 
time no channel is open; i.e., if we denote the observed mean (singly) open time mo, and 
the observed mean shut time as ms, then we assume ms  >> mo. How probable is this observation 
if there are actually N independent channels present? If we start with one channel open, the 
probability, 7r, that the next transition is the shutting of this one channel, with rate a, rather 
than a second channel opening, with rate (N — 	is 

7i = 
a 

(78) 
a + (N — 1)[3' 

The observed probability of being open in the experimental record, PON  say, is 

PON = 
MO + MS 

Furthermore, given our assumption that ms  > mo, the rate constants in this can be estimated 
from the data as 

llmo  

mo 
(79) 

11 Nms 	 (80) 
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1 + 
(AT 1)mo 

N ms  

1  — PON 

1 — PoN  /N.  
(81) 

We can now ask how many consecutive single openings are likely to be seen when 
there is actually more than one channel present. If we note that the probability that the singly 
open channel is followed by a transition to a doubly open channel is (1 — Tr), then the 
probability of getting r single openings before the first multiple opening occurs (given that 
there is at least one single opening) is 

P(r) = 	— TT) 	 (82) 

This is a geometric distribution of the sort already encountered in equation 36. The mean 
number of consecutive single openings, in, is, as in equation 38, thus 

1 	

1  ( N  
m   (1 — PON IN) 

1 — IT PoN N— 1 
(83) 

We have observed no  consecutive single openings, so the run of single openings must be at 
least no  in length. The probability of observing no  or more single openings is, as in equation 37, 

no) = Trno- 
	

(84) 

This result can also be derived, under the above assumptions, as the approximate probability 
that the waiting time until the first double opening is greater than the length, T, of the 
observed record, given that N channels are present. 

Consider, for example, a record consisting of single openings of mean length mo  = 1 
ms and mean shut time ins  = 99 ms, so mohns  = 0.0101, and PON  = 0.01. On the hypothesis 
that there are actually N = 2 channels present, equation 81, gives IT = 0.9949749. If we 
observe no  = 300 openings (i.e., about a 30-s record) with no double openings, then equation 
(84) gives the probability of a run at least this long as 0.222 (or 0.134 if N = 3). The 
observation would not be surprising if there were actually two or three channels present, 
even though no multiple openings have been observed, so the data are insufficient to provide 
good evidence for the hypothesis that there is only one channel present. On the other hand, 
if no  = 1200 single openings were observed (2 min with no double openings), equation (84) 
would give the probability of a run at least this long as 0.0024 if there were two channels 
present (or 0.0003 if three channels were present), so it is unlikely that more than one channel 
is functioning. 

8.2.2. A Better Approximation 

The case of N = 2 channels is discussed in detail by Colquhoun and Hawkes (1990). 
They give an approximation for the mean number of openings in a run of single openings as 
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m —
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(1 — 0.5P02  — 0.75PO2) 
Poe 

which differs from the result in equation (83) only by virtue of the 0.75P022  term. In either 
case, the result approaches 2/P02  when the observed probability of being open, P02, is 
sufficiently small. The result in equation (85) is plotted in Fig. 11, together with approximate 
upper confidence limits for the number of openings per run. 

8.2.3. Exact Solutions 

Colquhoun and Hawkes (1990) also present exact calculations concerning the lengths 
of runs of single openings (and bursts) in the case where there are N = 2 identical independent 
channels. Such calculations are needed to explore the conditions under which the approxima-
tions are adequate, though in order to obtain exact results it is necessary to specify the 
channel mechanism (whereas the above approximations have the virtue that this is not 
necessary). The approximation works well when (1) the openings occur singly and are well 
separated from each other, and (2) the openings occur in compact, well-separated bursts, the 
shut times within the bursts being brief relative to the openings. In the latter case, the word 
"opening" in the approximate argument should be replaced by "burst"; the burst is open for 
a large proportion of the time (so that two overlapping bursts will certainly produce a double-
amplitude event), and for the purposes of the present argument (as well as for physiological 
purposes) the burst is the "effective opening." However, in cases where the shut times within 
bursts are of the same order of magnitude as the open times, the approximation may be poor. 

8.2.4. Problems of Prolonged Bursts, Desensitization, and Sleepy Channels 

The approximation presented above works well when openings occur singly or in 
compact bursts, but it would probably not be very good for channels such as the NMDA- 

10' r 

Figure 11. The mean number of openings per 
run of single openings in a membrane patch 
that contains two channels, as calculated from 
the approximation given in equation 85. The 
dashed lines show the approximate upper con-
fidence limits for the number of openings per 
run, for P = 0.05, 0.01, and 0.001. Reproduced 
with permission from Colquhoun and 
Hawkes (1990). 
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type glutamate receptor, which produce complex and prolonged burst-like channel activations 
containing shut periods some of which are considerably longer than the openings. 

Furthermore, most channels show desensitization, inactivation, or 'sleeping' phenomena, 
which involve entry into shut states that may have very long lifetimes. If, for example, a 
patch contains two channels, but one of them is desensitized at the beginning of the recording, 
it will appear that only one channel is present. If the channel is open for much of the time, 
then it will be obvious when the second channel emerges from its desensitized state, because 
double openings will be seen straight away, but if the probability of being open is low, it 
may not be at all obvious that a second channel has appeared. Clearly, though, any method 
for trying to estimate N will not work well if N is effectively changing during the recording. 
This is probably one of the most serious problems in practice. 

8.2.5. Fitting with a Known Number of Channels 

If an estimate of the number of channels can be made, then it is possible to fit some 
sorts of distribution even when records contain more than one channel open at the same 
time (Jackson, 1985; Horn and Lange, 1983). These methods are discussed in Chapter 19 
(this volume). 

8.3. Use of Shut Periods within Bursts 

Most channels seem to produce openings in bursts rather than singly. This observation 
implies only that there is more than one shut state (see Sections 4, 5, and 13; Colquhoun 
and Hawkes, 1982). Regardless of the mechanism, it is likely, if the gaps within a burst are 
short, that all of the openings in one burst originate from the same individual channel, even 
if there are several channels present so the next burst may originate from a different channel. 
In this case, the distribution of the lengths of shut periods within (but not between) bursts 
can be interpreted in terms of mechanism as though only one channel was present, even 
when it is not known how many channels are actually present. This procedure was employed, 
for example, by Colquhoun and Sakmann (1985) and Sine and Steinbach (1986). 

9. Distribution of the Sum of Several Random Intervals 

Many problems involve finding the distribution of the sum of two or more random 
intervals, for example, the durations of the sojourns in the various states that constitute a 
burst of openings. This sort of problem also arises when we consider the relationship between 
single-channel currents and macroscopic currents (see Section 11). Some useful examples 
will be discussed in this section. 

9.1. The Sum of Two Different Exponentially Distributed Intervals 

By way of an example, consider again the simple two-state mechanism specified in 
equation 1, namely: 
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What is the distribution of the time interval between two successive openings? This time 
interval consists of one open time plus one shut time. The pdf of the open time is f 1(t) = 
ow', and that of the shut time is f2(t) = 13' e at. We wish to know the pdf, fit), for one 
open time plus one shut time. Suppose that the open time is of length T; if the total length 
of the gap between openings is t, then the length of the following shut period must be 
t — T. Since it is a basic characteristic of our random process that events occurring in 
nonoverlapping time intervals are independent, we can simply multiply the corresponding 
probability densities, which gives fi(r)fi(t — T). However, the length, T, of the opening may 
have any value from 0 to t, so to obtain the pdf, we must sum over these possibilities. This 
summation, because T is a continuous variable, must be written as an integral, so we obtain 
the pdf of the time between openings as 

T=t 

	

At) = 	fl(T)f2(t- T)dT. 	 (87) 
T=o 

This form of integral is called a convolution (of fi  and f2).* 
This argument leads to the general rule that the pdf of a sum of random intervals is the 

convolution of their individual pdfs. In this case, with simple exponential pdfs, the convolution 
(equation 87) can easily be integrated directly. In general, however, it is much easier to solve 
this sort of problem by use of the Laplace transform of the pdfs, because simple multiplication 
of the transforms corresponds with convolution in the time domain. This is the method that 
must be used for a more general treatment (see Section 13; Colquhoun and Hawkes, 1982), 
which provides another reason to discuss a simple example now. 

We shall denote the Laplace transform of f(t) as f*(s). In this example, we have 

fi(t) = ete-at and f2(t) = 	 (88) 

so their Laplace transforms, which can be obtained from tables (e.g. Spiegel, 1965), are 

fr(s) = et/(s + a) 	f/(s) = p'/(s + (3'). 	 (89) 

The Laplace transform of the required pdf (equation 87) is therefore 
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(86) 

f*(s) = ft(s)f (s) = 
a13' 	_ al3'  (  1 	1  ) 

(s + ot)(s + (3') 	a — f3' s + 13' 	s + a 
(90) 

Inversion of this transform gives the required pdf as 

f(t) = 	aR  , (e-a,
t e') 

cc — 13 
(91) 

*In general, the integral for a convolution would be from —00 to +00, but in this case the pdfs are zero for 
times less than zero. 

Stochastic Interpretation of Mechanisms 

W 
Shut~Open 

a 

437 

(86) 

What is the distribution of the time interval between two successive openings? This time 
interval consists of one open time plus one shut time. The pdf of the open time is fl(t) = 
ae- ca, and that of the shut time is fit) = 13' e- 13 't. We wish to know the pdf, j(t), for one 
open time plus one shut time. Suppose that the open time is of length T; if the total length 
of the gap between openings is t, then the length of the following shut period must be 
t - T. Since it is a basic characteristic of our random process that events occurring in 
nonoveriapping time intervals are independent, we can simply multiply the corresponding 
probability densities, which givesfl(T)f2(t - T). However, the length, T, of the opening may 
have any value from 0 to t, so to obtain the pdf, we must sum over these possibilities. This 
summation, because T is a continuous variable, must be written as an integral, so we obtain 
the pdf of the time between openings as 

f(t) = r~~ fb)h(t- T)dT. (87) 

This form of integral is called a convolution (of fl and f2). * 
This argument leads to the general rule that the pdf of a sum of random intervals is the 

convolution of their individual pdfs. In this case, with simple exponential pdfs, the convolution 
(equation 87) can easily be integrated directly. In general, however, it is much easier to solve 
this sort of problem by use of the Laplace transform of the pdfs, because simple multiplication 
of the transforms corresponds with convolution in the time domain. This is the method that 
must be used for a more general treatment (see Section 13; Colquhoun and Hawkes, 1982), 
which provides another reason to discuss a simple example now. 

We shall denote the Laplace transform of f(t) as f*(s). In this example, we have 

(88) 

so their Laplace transforms, which can be obtained from tables (e.g. Spiegel, 1965), are 

ft(s) = al(s + a) ff(s) = 13' I(s + W)· (89) 

The Laplace transform of the required pdf (equation 87) is therefore 

f *( ) - f*( )f*( ) - a 13' -~ (_1 - -_1 -) (90) 
s - I S 2 S - (s + a)(s + 13') - a - 13' s + 13' s + a 

Inversion of this transform gives the required pdf as 

(91) 

*In general, the integral for a convolution would be from -00 to +00, but in this case the pdfs are zero for 
times less than zero. 



438 
	

David Colquhoun and Alan G. Hawkes 

Notice that this pdf is the difference between two exponential terms and therefore, 
unlike the simple exponential, goes through a maximum (as already illustrated; see equation 
76 and Fig. 10a). This shape indicates a deficiency of very short values (compared with a 
simple exponential distribution), and this is what would be expected intuitively, because in 
order to get a short interval both the open and shut times must be very short, and this is 
relatively unlikely to happen. This characteristic shape is illustrated again in Section 11, 
Fig. 16, when the relationship between single-channel currents and macroscopic currents is 
discussed. The mean of this pdf, the mean time between openings, is, from equation 23, 

mean = tf(t)dt = —
1 

+ 1 
et 	pi • 

(92) 

As expected, this is merely the sum of the mean open time and the mean shut time. The 
mean opening frequency is the reciprocal of this, i.e., 

a + 	01131(w) = 13'P2(°°) 	 (93) 

where pi(00) and P2(00) are the equilibrium probabilities (or fractions) of open and shut 
channels, respectively. In other words, the mean opening frequency is the opening transition 
rate, 13', multiplied by the probability, P2(°°), that a channel is shut (i.e., available to open). 
It is, of course, equal to the mean equilibrium shutting frequency, ap i (oc). This provides 
another way of interpreting rate constants in terms of the frequency with which transitions 
occur (see also Sections 1.2 and 4.6 and Fig. 6). 

9.2. The Distribution of the Sum of n Exponentially Distributed Intervals 

As an example, consider the case where we wish to know the distribution of the total 
open time in a burst of openings that contains exactly n openings (this will be close to the 
burst length if the shut periods are short). Suppose that each of the openings has the same 
exponentially distributed length with mean 1/a, i.e., they have pdf f l (t) = oi.e-at, as above. 
We need, according to the argument in the previous section, the n-fold convolution of f i (t) 
with itself. This is made easy by using Laplace transforms as in equations 89 and 90. The 
Laplace transform of the required result is 

f *(S) = UP(S)in 	a  

	

s + 	a) 

Inversion of this transform gives the required pdf as 

et(oa)n-le't 
f(t) = 

(n — 1)! 

This is known as a gamma distribution. It has a mean n/a, simply n times the lifetime of 
an individual interval, as expected, and a variance n/a2. Like the result in equation 91, it is 
zero at t = 0 and goes through a maximum at t = tmax  = (n — 1)/a. For n = 1 it reduces 

(94)  

(95)  
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Notice that this pdf is the difference between two exponential terms and therefore, 
unlike the simple exponential, goes through a maximum (as already illustrated; see equation 
76 and Fig. lOa). This shape indicates a deficiency of very short values (compared with a 
simple exponential distribution), and this is what would be expected intuitively, because in 
order to get a short interval both the open and shut times must be very short, and this is 
relatively unlikely to happen. This characteristic shape is illustrated again in Section 11, 
Fig. 16, when the relationship between single-channel currents and macroscopic currents is 
discussed. The mean of this pdf, the mean time between openings, is, from equation 23, 

foo I 1 
mean = tf(t)dt = - + -;. 

o a 13 
(92) 

As expected, this is merely the sum of the mean open time and the mean shut time. The 
mean opening frequency is the reciprocal of this, i.e., 

(93) 
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an individual interval, as expected, and a variance n/a2. Like the result in equation 91, it is 
zero at t = 0 and goes through a maximum at t = tmax = (n - 1)/a. For n = 1 it reduces 



Stochastic Interpretation of Mechanisms 
	 439 

to a simple exponential, but as n gets larger, the pdf becomes more and more symmetrical, 
eventually approaching a Gaussian shape. The cumulative form of this distribution is given, 
for example, by Mood and Graybill (1963): 

n— I 

F(t) = 1 	
(at-Yr 

e' 
r! 

9.3. The Distribution of a Random Number of Exponentially 
Distributed Intervals 

The results in the last section referred to the sum of a fixed number of exponentially 
distributed values. In the case of, for example, a burst of channel openings, the number of 
openings is not fixed but random. In the simplest cases the number of openings per burst 
will follow a geometric distribution, as exemplified in Sections 4.6 and 8.2. If we write the 
geometric distribution in the form already used in equation (82), the probability of there 
being r intervals (e.g., r openings per burst) is 

P(r) = Trr-1(1 — ir) 	 (97) 

with mean 

mr  = 1/(1 — 7r). 	 (98) 

The required pdf can be found by weighting the pdf for r openings, with Laplace transform 
ft(s)r, as in equation 94, with P(r) from equation 97. This gives 

r=. 

f*(s) = E p(rAft (s),r 
r-= I 

r=. 

1 - rr 	 7ra  
7r 	r  (s + 01) r= I 

a(1 — 7r) 
s + 0(1 — 7r) 

(99) 

Comparison of this result with that in equation 89 shows that its inverse transform is a simple 
exponential with mean 1/a(1 — Tr) = mr/a, i.e., simply the mean number of intervals, mr  
from equation 98, times the mean length of one interval; thus, 

f(t) = (uhnr) exp(— at/mr) 	 (100) 

This completes the derivation of the result already given in equation 28. 

(96) 
r=0 

Stochastic Interpretation of Mechanisms 439 

to a simple exponential, but as n gets larger, the pdf becomes more and more symmetrical, 
eventually approaching a Gaussian shape. The cumulative form of this distribution is given, 
for example, by Mood and Graybill (1963): 

n-I 

F(t) = I - '" (at)' e-ut 

L.J r! 
r=O 

9.3. The Distribution of a Random Number of Exponentially 
Distributed Intervals 

(96) 

The results in the last section referred to the sum of a fixed number of exponentially 
distributed values. In the case of, for example, a burst of channel openings, the number of 
openings is not fixed but random. In the simplest cases the number of openings per burst 
will follow a geometric distribution, as exemplified in Sections 4.6 and 8.2. If we write the 
geometric distribution in the form already used in equation (82), the probability of there 
being r intervals (e.g., r openings per burst) is 

P(r) = 11"r-l(1 - 11") (97) 

with mean 

mr = 11(1 - 11"). (98) 

The required pdf can be found by weighting the pdf for r openings, with Laplace transform 
!'Ns)', as in equation 94, with P(r) from equation 97. This gives 

r=OO 

!*(s) = L P(r)[ff(s)Y 
r= 1 

= 1 ~ 11" ~ (s :0. a)r 
r=1 

0.(1 - 11") 

s + 0.(1 - 11") 
(99) 

Comparison of this result with that in equation 89 shows that its inverse transform is a simple 
exponential with mean 110.(1 - 11") = mJa, i.e., simply the mean number of intervals, mr 
from equation 98, times the mean length of one interval; thus, 

(100) 

This completes the derivation of the result already given in equation 28. 



440 
	

David Colquhoun and Alan G. Hawkes 

10. Correlations and Connectivity 

It seems surprising, at first sight, that a memoryless process can show a correlation 
between the length of one opening and the length of the next. Nevertheless, this is the case, 
as was first pointed out by Fredkin et al. (1985). The existence of such correlations is of 
importance in two main respects. First, the behaviour of channels after a perturbation (e.g., 
a voltage jump or concentration jump) depends on the nature of correlations (see also Section 
11). And second, correlation phenomena can potentially give information about the way that 
the various states in the mechanism are connected. This latter ability is of considerable 
interest for the investigation of mechanisms, though its full potential has yet to be exploited 
experimentally. Both macroscopic and, to a greater extent, single-channel experiments can 
give information about the number of states that exist, but it is much harder to discover how 
these states are connected to each other, and the ability of correlation measurements to 
provide such information is a unique advantage of being able to measure the behaviour of 
single molecules. 

10.1. Origins of Correlations 

According to our (Markov) assumptions, the duration of a sojourn in any individual 
state must be independent of (and therefore not correlated with) the length of the sojourn in 
the previous state. It is for this reason that no correlations between open or shut times would 
be expected for the simple two-state mechanism in equation 1 or, indeed, for any of the 
mechanisms that have been discussed so far. In fact, correlations can arise only if there are 
at least two indistinguishable shut states and at least two indistinguishable open states (i.e., 
at least two open states with the same conductance). Furthermore, there must be at least two 
routes from open states to shut states before correlations are expected (Fredkin et al., 1985; 
Colquhoun and Hawkes, 1987; Ball and Sansom, 1988a). More precisely, correlations will 
be found if there is no single state, deletion of which totally separates the open states from 
the shut states. The number of states that must be deleted to achieve such a separation is 
the connectivity of open and shut states, so correlations will be seen if the connectivity is 
greater than 1. The mechanisms in schemes 101 each have two open states (denoted 0) and 
three shut states (denoted C). 

(a) C5 	(b) C5 	(c) C5 

I 	 I 
C4 01 	C4 01 	C4-01 

I 	I 	I 	 I 	I 
C3-02 	C3  02 	C3-02  

(101) 

In schemes a and b there will be no correlations; deletion of state C3  (or of state 02) in a 
separates the open and shut states, as does deletion of C3  in b. In c, on the other hand, the 
connectivity is 2 (e.g., deletion of C3  and C4  will separate open and shut states), so correlations 
between open times may be seen. Even in this case, correlations between successive open 
times will be seen only if the two open states, 01  and 02  have different mean lifetimes. The 
correlations result simply from the occurrence of several C4 	01  oscillations followed by 
a C4 	C3  transition and then several C3  ,"7-' 0, oscillations, so runs of 01  and runs of 02 
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(101) 

In schemes a and b there will be no correlations; deletion of state C3 (or of state O2) in a 
separates the open and shut states, as does deletion of C3 in b. In c, on the other hand, the 
connectivity is 2 (e.g., deletion of C3 and C4 will separate open and shut states), so correlations 
between open times may be seen. Even in this case, correlations between successive open 
times will be seen only if the two open states, 0, and O2 have different mean lifetimes. The 
correlations result simply from the occurrence of several C4 ~ 0, oscillations followed by 
a C4 ~ C3 transition and then several C3 ~ O2 oscillations, so runs of 0, and runs of O2 
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openings occur. The effect will clearly be most pronounced if the C4 	C3  reaction is 
relatively slow. 

For example, most of the properties of the nicotinic receptor are predicted well by c: 
in this case 02  has a long mean lifetime compared with Q (but it has the same conductance), 
whereas C3  has a very short lifetime. Thus, long open times tend to occur in runs (so there 
is a positive correlation between the length of one opening and the next), but long openings 
tend to occur adjacent to short shuttings, giving a negative correlation between open time 
and subsequent shut time (Colquhoun and Sakmann, 1985). 

These results can be extended to correlations between the lengths of bursts of openings 
and between the lengths of openings within a burst (Colquhoun and Hawkes, 1987). There 
will be correlations between bursts when the connectivity (as defined above) between open 
states and long-lived shut states is greater than 1. There will be correlations between openings 
within a burst when the direct connectivity between open states and short-lived shut states 
is greater than 1 (the term direct connectivity refers only to routes that connect open and 
short-lived shut states directly, not including routes that connect them indirectly via a long-
lived shut state, entry into which would signal the end of a burst). Thus, for the examples 
in scheme 101, taking C5  to be the long-lived shut state, neither a nor b would show any 
such correlations, whereas c would show correlations within bursts but no correlations between 
bursts (as observed experimentally by Colquhoun and Sakmann, 1985). The following scheme 
(in which C5  and C6  both represent long-lived shut states), on the other hand, would show 
all three types of correlation. 

C5— C6  
I 	I 

C4— 01  
I 	I 

C3-02  

10.2. Measurement and Display of Correlations 

Correlations of this sort have been reported for many other ion channels, by, for example, 
Jackson et al. (1983), Labarca et al. (1985), Ball et al. (1988), McManus et al. (1985), Blatz 
and Magleby (1989), Magleby and Weiss (1990b), and Gibb and Colquhoun (1992). 

In the earlier work in this field, it was usual to measure correlation coefficients from 
the experimental record. However, it is visually more attractive, and in some respects more 
informative, to present the results as graphs, as suggested by McManus et al. (1985), Blatz 
and Magleby (1989), Magleby and Weiss (1990b), and Magleby and Song (1992). An example 
of such a plot is shown in Fig. 12. This graph illustrates correlations found for the NMDA-
type glutamate receptor (Gibb and Colquhoun, 1992). To construct this graph, five contiguous 
shut-time ranges were defined (each centered around the time constant of a component of 
the shut-time distribution). Then, for each range, the average of the open times was calculated 
for all openings that were adjacent to shut times in this range, and this average open time 
was plotted against the mean of the shut times in the range. The graph in Fig. 12 shows a 
continuous decline, so it is clear that long open times tend to be adjacent to short shut times, 
and vice versa. 

(102) 
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Figure 12. Relationship between the 
mean durations of adjacent open and shut 
intervals. The graph shows the mean (±  
standard deviation of mean) of the open 
times in 16 different patches plotted 
against the average of the mean adjacent 
shut time ranges used in each patch. Long 
open times tend to be next to short shut 
times. These results are for NMDA-type 
glutamate receptors in dissociated cells of 
adult rat hippocampus (CAI region), acti-
vated by low glutamate concentrations. 
Reproduced from Gibb and Colquhoun, 
1992. 

10.3. Correlations as a Test of Markov Assumptions 

The reason the openings that are adjacent to short closings tend to be long was investi-
gated further, with the results shown in Fig. 13 (Gibb and Colquhoun, 1992). Figure 13A,B 
shows the conditional distributions of open times for openings that occur adjacent to the 
shortest closings (in A) and for openings that occur adjacent to the longest closings (in B). 
(The means from these distributions contribute points to Fig. 12.) The distributions are 
displayed as distributions of log(duration), as explained in Chapter 19 (Section 5.1.2) (this 
volume). The dashed line in A shows the (scaled) fit from B, and the dashed line in B shows 
the (scaled) fit from A. It can be seen that there is an excess of long openings in A, and an 
excess of short openings in B. This is shown quantitatively in Fig. 13C,D; it is clear from 
Fig. 13C that the time constants for the open-time distribution are much the same for all 
openings, regardless of whether they are adjacent to short or long shuttings. The mean open 
times differ only because the areas attached to each time constant differ, as shown in Fig. 
13D. Similar observations were made by McManus and Magleby (1989) for the large-
conductance calcium-activated potassium channel; they pointed out that this behaviour is a 
clear prediction of the Markov assumptions, whereas at least some non-Markov models do 
not predict such behaviour and can therefore be rejected on the basis of these observations 
(see Section 1.3). 

10.4. Two-Dimensional Distributions 

In order to extract all the information from the experimental record, it is necessary, 
if correlations are present, to consider two-dimensional distributions rather than the one-
dimensional distributions considered so far (Fredkin et al., 1985). An example of a two-
dimensional distribution is shown in Fig. 14A (Magleby and Song, 1992). This distribution 
shows open time on one coordinate and shut time on the other. It was constructed from 
simulated data that were derived from the mechanism shown in equations 101c and 110, so 
there are two components in the open-time distributions and three components in the shut-
time distributions (which resemble qualitatively the distribution shown in Chapter 19, this 
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Figure 13. Conditional distributions of apparent open times adjacent to brief (A) and long (B) shut times. 
Data were as described in Fig. 12. A; From a total of 1206 apparent open times, 640 were identified as 
adjacent to shut times in the range 50 u.s to 0.3 ms. These were fitted with the sum of three exponential 
components (solid curve) with time constants (areas in parentheses) of 48 p.s (52%), 0.36 ms (8%), and 3.21 
ms (40%). The fit predicted a total of 1154 open times. The dashed line in A shows the fit from B scaled 
to contain the same number of openings as the solid line. B: A total of 335 open times were identified as 
adjacent to shut times in the range 50-5000 ms. These were fitted with the sum of three exponentials (solid 
curve) with time constants (areas in parentheses) of 68 p.s (60%), 0.46 ms (5.8%), and 2.79 ms (35%). The 
dashed line shows the fit from A scaled to contain the same number of openings as in the solid line. The 
difference between dashed and solid lines indicates that, relative to openings adjacent to long shut periods, 
there are more long openings and fewer short openings adjacent to short shut periods. C and D: Mean time 
constants (C) and areas (D) of the exponential components describing conditional open-time distributions 
from 16 different patches. The mean (and its standard deviation) for each fitted parameter is shown plotted 
against the average of the mean adjacent shut-time ranges used in each patch. The inverted triangles to the 
right of the data values in C show the mean (and its standard deviation) for the time constants from the 
unconditional open-time distributions, and the dashed lines show the position of each mean across the plot. 
In D, the filled circles, filled squares, and filled diamonds refer to the area of the fast, intermediate, and 
slow components of the open-time distributions. The lines drawn in D have experimental values only at the 
data points and are drawn only so that the data values for each open time component can be clearly identified. 
Reproduced from Gibb and Colquhoun, 1992. 
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Figure 13. Conditional distributions of apparent open times adjacent to brief (A) and long (B) shut times. 
Data were as described in Fig. 12. A; From a total of 1206 apparent open times, 640 were identified as 
adjacent to shut times in the range 50 Il-s to 0.3 ms. These were fitted with the sum of three exponential 
components (solid curve) with time constants (areas in parentheses) of 48 Il-S (52%), 0.36 ms (8%), and 3.21 
ms (40%). The fit predicted a total of 1154 open times. The dashed line in A shows the fit from B scaled 
to contain the same number of openings as the solid line. B: A total of 335 open times were identified as 
adjacent to shut times in the range 50-5000 ms. These were fitted with the sum of three exponentials (solid 
curve) with time constants (areas in parentheses) of 68 Il-s (60%), 0.46 ms (5.8%), and 2.79 ms (35%). The 
dashed line shows the fit from A scaled to contain the same number of openings as in the solid line. The 
difference between dashed and solid lines indicates that, relative to openings adjacent to long shut periods, 
there are more long openings and fewer short openings adjacent to short shut periods. C and D: Mean time 
constants (C) and areas (D) of the exponential components describing conditional open-time distributions 
from 16 different patches. The mean (and its standard deviation) for each fitted parameter is shown plotted 
against the average of the mean adjacent shut-time ranges used in each patch. The inverted triangles to the 
right of the data values in C show the mean (and its standard deviation) for the time constants from the 
unconditional open-time distributions, and the dashed lines show the position of each mean across the plot. 
In D, the filled circles, filled squares, and filled diamonds refer to the area of the fast, intermediate, and 
slow components of the open-time distributions. The lines drawn in D have experimental values only at the 
data points and are drawn only so that the data values for each open time component can be clearly identified. 
Reproduced from Gibb and Colquhoun, 1992. 
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Figure 14. Illustrations of correlations based on 107  simulated observations (reproduced from Magleby and 
Song, 1990, with permission). A: A bivariate distribution of open time on one axis and shut time on the 
other. The distribution of log(duration) is shown, so that peaks in the distribution occur at times corresponding 
to the time constants of the exponential components (see Chapter 19, this volume, Section 5.1.2). B: An 
example of the dependency plot (see text) for the same simulated data. 

volume, Fig. 15). The distributions in Fig. 14 are displayed as distributions of log(duration), 
as explained in Chapter 19 (this volume) (Section 5.1.2). 

The two conditional open-time distributions that were shown in Fig. 13A,B are simply 
sections (at two particular fixed shut times) across the two-dimensional distribution in Fig. 
14A. In practice, in order to construct the conditional distributions from experimental data, 
it is necessary to use a range of shut times (i.e., a shut-time bin) rather than a single exact value. 

The fact that the open-time distribution differs according to the adjacent shut time (as 
in Fig. 13A,B) is visible in the two-dimensional distribution, but it is not very prominent. 
It was therefore suggested by Magleby and Song (1992) that the correlations could be made 
more obvious by displaying the data in the form of a dependency plot. They define dependency 
as the (normalized) difference between the actual frequency of particular shut—open time 
pairs and the frequency that would be expected if openings and shuttings were independent. 
Define fo(to) and fs(ts) as the unconditional probability density functions for open times and 
shut times, respectively, and f(tods) as the two-dimensional distribution. If there were no 
correlations, then the two-dimensional distribution would simply be the product of the separate 
distributions, fo(to)fs(ts). Thus, dependency, d(to,ts), was defined as 

d(to,ts) — 
f(to,ts) — fo(to)fs(ts)  

fo(to)fs(ts) 

This will be zero for independent intervals, and a value of +0.5 would indicate that 
there are 50% more observed interval pairs than would be expected in the case of independent 
adjacent intervals. A description of how to calculate the plot from experimental values is 
given by Magleby and Song (1992). An example is shown in Fig. 14B for the data shown 
in Fig. 14A. The dependency plot clearly shows the excess of short open times adjacent to 
long shut times, and the deficiency of short open times adjacent to short shut-times. 

Plots of the sort shown in Fig. 14 can be used to distinguish between different kinetic 
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mechanisms and as an aid in fitting. It may be mentioned here that full maximum-likelihood 
fit of the entire idealized data record, not of separate distributions, with a particular mechanism 
(see Sections 12.5 and 13.7) is probably the best way of extracting all the information from 
an experimental record. But plots like those in Figs. 13 and 14 are still good ways to display 
the quality of the fit so obtained, even though they are not used for the fitting process itself. 

10.5. The Decay of Correlations 

In a record at equilibrium, the correlation between, for example, an open time and the 
nth subsequent open time (for a single channel) will decay towards zero with increasing lag 
(n). Likewise, the distribution of open times following a jump will, after sufficient time, 
eventually become the same as the equilibrium distribution of all open times (see Section 11). 

In principle, the connectivity between open and shut states can be measured experimen-
tally, because the decay of the correlation coefficient with increasing lag (n) should be 
described by the sum of m geometric terms, where m is the connectivity minus one (Fredkin 
et al. 1985; Colquhoun and Hawkes, 1987). A similar decay should be seen in the mean 
lifetimes of events following a jump (Ball et al., 1989). The full potential of measurements 
of this sort has yet to be achieved in practice. 

10.6. Spurious Correlations 

It was pointed out in Section 10.1 that the correlations will be strongest for the mechanism 
in equation 101c when the C4 .== C3 reaction is relatively slow. At the extreme case, when 
this rate is zero, we are left with two separate channels with different mean open and shut 
times. Furthermore, neither of these channels would, by itself, show any correlations. Clearly, 
it is quite possible for spurious correlations to arise as a result of receptor heterogeneity 
(which is a major problem in many studies). In fact, it is even possible in principle for 
spurious correlations to arise even when there is more than one identical channel in the 
membrane patch (Colquhoun and Hawkes, 1987), though the importance of this has not yet 
been investigated. Furthermore, the inability to detect brief events may give rise to strong 
correlation in the observed record when there is actually little or no correlation (as exemplified 
in Section 12.4). In other cases imperfect resolution may attenuate real correlations (Ball 
and Sansom, 1988a). 

11. Single Channels and Macroscopic Currents after a Jump 

Essentially everything that has been said so far concerns single-channel records that 
are in a steady state (see Section 7). However, synapses and action potentials do not function 
in a steady state; they operate far from equilibrium, and so it is important to understand 
single-channel behaviour in the transient state before equilibrium is attained. 

We shall discuss here only the case where the transition rates between states are constant, 
i.e., do not vary with time. This means, for example, that membrane potential and/or ligand 
concentration must be constant (see Section 1.1). We therefore consider only the cases where 
membrane potential or ligand concentration are changed in a stepwise fashion from one 
constant value to another. Such experiments are usually referred to as voltage jumps and 
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concentration jumps, respectively. It is, for example, common to mimic a synaptic current 
by applying a very brief rectangular pulse of agonist (to an outside-out membrane patch). 
We shall not discuss here the practical problems that often arise in achieving sufficiently 
rapid changes in potential or concentration to fulfill the assumptions. Some of the practical 
aspects are discussed in Chapter 19. 

11.1. Single Channels after a Jump in the Absence of Correlations 

The behaviour of single channels following a sudden change in membrane potential or 
ligand concentration is not necessarily the same as that in the steady state. The differences 
depend primarily on two things. First, they depend on the state of the system at the moment 
the jump was applied (t = 0). Second, they depend on whether the channels show. correlations 
of the sort discussed in Section 10. 

The simplest case occurs when channel openings are uncorrelated (see Section 10). This 
will, for example, always be the case if there is only one open state. In this case, all the 
openings and shuttings that follow the jump will, with one exception, have exactly the same 
distributions as in the steady state. 

The one exception is the first latency. Consider, as an example, a membrane patch that 
is initially bathed in an agonist-free solution, so the channel(s) in it are shut. At t = 0 the 
agonist concentration is suddenly increased from zero to a finite value. The time that elapses 
before the first channel opening occurs is defined as the first latency, and its distribution 
depends on the fraction of receptors that are in each of the different shut states at t = 0. 

Consider, for example, the simple agonist mechanism that was discussed in Section 5 
and is shown again in equation 103. The channels would all be in state 3 (R, the resting 
state) in the absence of agonist. Compare this situation with that which obtains during a 
steady-state record with a constant agonist concentration: in this case, the shut channels 
would not all be in state 3 (R) but would be divided between state 3 and state 2 (AR), 
according to the value for the equilibrium constant for binding. The initial condition from 
which an opening occurs differs in these two cases, so the distribution of the shut times that 
precede openings will differ accordingly. This is intuitively very reasonable. At equilibrium, 
every shut period is preceded by an opening, so the shut period must always start in state 
2 (AR), and similarly, every shut period must end in state 2 [this is why the probability 
P22(t) is needed for the derivation of the shut-time distribution given by Colquhoun and 
Hawkes, 1994, Appendix 1]. Because opening can occur directly from state 2, it is easy to 
see that the shut state preceding the next opening may be quite short; there may be no sjourn 
in state 3 before the next opening. When on the other hand, the channels are all initially in 
state 3 (R), the channel must spend time both in state 3 and in state 2 before opening is 
possible, and so a longer time is likely to elapse before an opening occurs. 

As usual for a Markov process, these differences in the distributions depend entirely 
on differences in areas rather than time constants. In the case of mechanism 59, there are 
two shut states, so distributions of shut times are therefore a mixture of two exponentials. 
The time constants for the two components are the same for all shut-time distributions, 
including that for the first latency after a jump; but the area of the faster component will be 
larger for channels that were initially in state 2 (AR) than it is for channels that were initially 
in state 3 (R). The steady-state equivalent of this phenomenon has already been illustrated 
in Section 10.3 and Figs. 13 and 14. 

As an example, consider the mechanism in equation 59 with the following transition 
rates (all in s-  '): 
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R 230 - AR 10- 0°  AR* 
1000 	1000 
	

(103) 
3 	2 	1 

(for example, we could have k+1  = 107M- I s' and a concentration of 10 p,M, giving the 
binding rate as 100 s-1). The equilibrium shut-time distribution, calculated as described in 
Colquhoun and Hawkes (1994) (see also Section 13; Chapter 20, this volume) is, in the 
standard form of equation 25, 

f(t) = 	+ a2X2e-k2( 	 (104) 

where the time constants are 

T i  = 1/X = 0.4875 ms and T2 = 1/A2 = 20.51 ms 
	

(105) 

and the areas of the components are 

a l  = 0.4750 and a2  = 0.5250 
	

(106) 

The mean length of a shut period at equilibrium is therefore 

mean shut time = a I T I  + a2T2  = 11.00 ms 
	

(107) 

Since, from equation 24, the mean lifetime of state 3 is 10 ms, and the mean lifetime of 
state 2 is 0.5 ms, it is clear that shut times consist, on average, of a 2 —> 3 —> 2 transition 
(the rate constants show that it is equally likely that a channel in state 2 will, at its next 
transition, move to state 3 or state 1). This is for shut periods that start in state 2 and end 
in state 2. However, if we consider a concentration jump from zero concentration to 10 p,M, 
the channels are initially all in state 3. The distribution of the latency until the first opening 
will therefore be the distribution of shut times conditional on starting in state 3. This can 
be found in the way given by Colquhoun and Hawkes (1994), but in this case the appropriate 
probability would be P32(t) rather than P22(t). The result is a distribution like that in equation 
104 with the same rate constants, as given in equation 105, but with areas 

al  = —0.02435 and a2  = 1.02435 	 (108) 

and 

mean shut time = a I T, + a2T2  = 21.00 ms 	 (109) 

In this case one of the areas is negative, which means that the distribution goes through a 
maximum, as illustrated earlier; in other words, very short latencies are unlikely. Correspond-
ingly, the macroscopic current for such a jump would have a sigmoid start; the time constants 
for the relaxation would be, from equation 62-64, 0.3778 ms and 2.205 ms, the former 
having a negative amplitude. 

After the first latency has elapsed, all openings and shuttings have exactly the same 
distributions as at equilibrium (mean open time 1.00 ms; mean shut time 11 ms). This is a 
consequence of the absence of correlations in this mechanism. 
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consequence of the absence of correlations in this mechanism. 
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11.2. Single Channels after a Jump in the Presence of Correlations 

The characteristics of single-channel openings after a jump when correlations are present 
have been considered by Colquhoun and Hawkes (1987) and by Ball et al. (1989). As an 
example, consider the mechanism in equation (101c). This has been used by several authors 
(e.g., Coiquhoun and Sakmann, 1985) to describe the nicotinic acetylcholine receptor (see 
also Section 13; Chapter 20, this volume; Colquhoun and Hawkes, 1982). In this context, 
the mechanism may be written to show the binding of two agonist molecules (A) to the shut 
(R) and open (R*) receptor, thus: 

State 
number 

State 
number 

5 

2k+i 

4 AR AR* 1 (110) 
a l  

2k-2  k+2 2k*2 kl-`2 

3 A2R R2 	A2R* 2 
(12. 

The experimental evidence suggests that the mean lifetime of open state 1 (the singly 
liganded open state) is considerably shorter than that of open state 2 and that the mean 
lifetimes of shut states 3 and 4 are short. This would account for the observed correlations, 
as explained in Section 10.1. An example of the calculation of single-channel properties 
after a jump is given by Colquhoun and Hawkes (1987) for this mechanism. They used the 
rate constants that were found by Coiquhoun and Sakmann (1985) to provide a fair description 
of nicotinic receptor behaviour and used these values to predict the behaviour of channels 
following a concentration jump from zero to 4 nM. The time constants were, of course, the 
same for all distributions, but the areas changed such that the mean shut times were as follows: 

• Mean latency to first opening 1539 s 
• Mean shut time between first and second openings 1038 s 
• Mean shut time between second and third openings 806.1 s 
• Mean shut time between third and fourth openings 698.6 s 

and so on, until the equilibrium mean shut time of 605.7 s is reached. 
Similarly, mean lengths of the first, second, etc. openings following the jump were 

0.754 ms, 1.029 ms, 1.156 ms, 1.215 ms and so on until the equilibrium mean open time 
of 1.267 ms was attained. The calculation of these values, for a mechanism as complex as 
that in equation 110, cannot be written explicitly but requires the use of matrix methods (see 
Section 13 below; Chapter 20, this volume; Colquhoun and Hawkes 1982, 1987). It has been 
shown by Ball et al. (1989) that such measurements can be used to provide information 
about mechanisms. 

11.3. The Relationship between Single-Channel Currents and 
Macroscopic Currents 

From the experimental point of view, the relationship is simple: the macroscopic current 
is just the sum or average of a set of single-channel records. Two schematic examples have 
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already been shown, in Figs. 2 and 5, of the relationship between single-channel currents 
and macroscopic currents. In both of these it was supposed for simplicity that the channels 
open synchronously at t = 0 or, in other words, that the first latency was negligible. This 
is not always true. An example of experimental measurements in which it is certainly not 
true is shown in Fig. 15. This shows responses of a membrane patch that contained NMDA-
type glutamate receptors to application of the agonist (glutamate) for 1 ms. The patch probably 
contained only one channel (see Section 8), and six individual responses are shown. The 
average of these responses is shown at the top of the figure and is seen to follow a time 
course that is typical of NMDA receptors, with a relatively slow rise time followed by a 
slow double-exponential decay, with time constants, in this case, of T = 61.5 ms and 208 
ms. In this experiment it is clear that the latency until the first opening occurs is sometimes 
very long indeed, and this will have a profound effect on the time course of the macroscopic 
current. For example, in the third trace from the top in Fig. 15, the first opening occurs 
about 860 ms after the 1-ms pulse, and in the fifth trace the latency is about 1340 ms. 

In order to predict, from some specified mechanism, the results of an experiment like 
that shown in Fig. 15, we first note that the experiment involves two concentration jumps. 
First, there is a jump from zero concentration to 1 mM, the channels being initially in their 
resting state. This is followed, 1 ms later, by a jump from 1 mM to zero. The initial condition 
(i.e., the fraction of channels in each state) for the second jump is found during the calculation 
of the response to the first jump; it is simply the fraction of channels in each state, (t), at 
t = 1 ms. The methods for calculating the macroscopic (average) current have been mentioned 
above and are described in Chapter 20 (this volume). 

11.3.1. The Simplest Example of the Effect of First Latency 

In order to investigate the effect of nonsynchronous channel opening, it will be useful 
to consider first the simplest possible case. This case concerns a hypothetical channel that, 
after brief agonist application, produces an activation consisting of a single opening, after 
the first latency has elapsed (for the NMDA receptor, the activation is actually a great deal 
more complicated than a single opening). In Fig. 16A, nine examples are shown of simulated 
channels with a mean first latency of 1 ms and a mean open time of 10 ms (the variability 
of both being described by simple exponential distributions). The average current (shown at 
the top) is seen, not surprisingly, to have a rising phase that can be fitted with an exponential 
with a time constant of about 1 ms, and the decay phase has a time constant of about 10 
ms. Apart from being about ten times too slow, this example is similar to what happens at 
a neuromuscular junction. 

More surprising, perhaps, are the results shown in Fig. 16B, in which the numbers are 
reversed, and simulated channels have a mean first latency of 10 ms and a mean open time 
of 1 ms. The averaged current shown at the top is seen to have essentially the same shape 
as in Fig. 16A (though it is ten times smaller and considerably noisier relative to its amplitude). 
Thus, in this latter case, the rate of decay reflects the duration of the first latency, whereas 
the rate of rise represents the mean channel-open time. The reason for this result, which 
seems paradoxical at first sight, can be seen from the simulations (e.g., the exponential 
distribution of first latencies means that short latencies are more common than long ones) 
and from the relevant theory, which was outlined in Section 9.1. The distribution of the time 
from the stimulus until the channel shuts finally is simply the distribution of the sum of (1) 
the first latency (mean length U(3', say), and (2) the length of the channel opening (mean 
length 1/a, say). This distribution has already been found, as the convolution in equation 
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Figure 15. Illustration of first latency measurement. The lower section shows six individual responses, each 
2000 ms in duration, to a 1-ms pulse of 1 mM glutamate. The time at which the command signal for the 
pulse was applied is shown in the topmost trace (the actual concentration change at the patch started about 
1 ms later). This membrane patch contained, almost certainly, only one active channel, and it is clear that 
the latency before the first opening is often long (see text). The average of 122 such records is shown at the 
top. The decay phase of the average (starting from t = 37 ms) was fitted with two exponentials. Their time 
constants were 61.5 ms and 208 ms (the latter accounts for 23.6% of the amplitude at the starting point for 
the fit). (Data of B. Edmonds; outside-out patch from rat dentate gyrus granule cell at —60 mV, in solution 
containing 5 11,M glycine and 5µM CNQX. Methods as in Edmonds and Colquhoun, 1992.) 
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Figure 15. Illustration of first latency measurement. The lower section shows six individual responses, each 
2000 ms in duration, to a I-ms pulse of I mM glutamate. The time at which the command signal for the 
pulse was applied is shown in the topmost trace (the actual concentration change at the patch started about 
I ms later). This membrane patch contained, almost certainly, only one active channel, and it is clear that 
the latency before the first opening is often long (see text). The average of 122 such records is shown at the 
top. The decay phase of the average (starting from t = 37 ms) was fitted with two exponentials. Their time 
constants were 61.5 ms and 208 ms (the latter accounts for 23.6% of the amplitude at the starting point for 
the fit). (Data of B. Edmonds; outside-out patch from rat dentate gyrus granule cell at -60 mY, in solution 
containing 5 fJ-M glycine and 5 fJ-M CNQX. Methods as in Edmonds and Colquhoun, 1992.) 
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Figure 16. A simple simulation of a 
synaptic current in which each chan-
nel is supposed to produce only a 
single opening after an exponentially 
distributed latency. A: Mean latency 
1 ms, mean open time 10 ms. The 
lower part shows nine examples of 
simulated channels. The top trace is 
the average of 1000 such channels; 
the double-exponential curve fitted to 
the average has T = 1.03 ms (ampli-
tude 1.11 pA), and T = 10.6 ms 
(amplitude —1.11 pA). B: Similar, 
but with a mean latency of 10 ms 
and a mean open time of 1 ms. The 
double-exponential curve fitted to the 
average has T = 0.76 ms (amplitude 
0.092 pA) and T = 12.0 ms (ampli-
tude —0.091 pA). 
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87. Since both intervals have been taken to be simple exponentials, f(t) = tie' and f2(t) = 
e-a'`, the result, fit), is exactly as has already been given in equation 91. It has the form 

of the difference between two exponentials, and it is the curve that has been fitted to the 
averages in Fig. 16. 

In this particular simple case, though not in general, there is a very simple relationship 
between the distribution, f(t), of the total event length, and the shape of the averaged current. 
The time course of the current is given, apart from a scale factor, by the probability that a 
channel is open at time t. This we shall denote Popen(t), and it can be found as follows. A 
channel will be open at time t if (1) the first latency is of length u, and (2) the channel stays 
open for a time equal to or greater than t — u. The probability that a channel stays open 
for a time t — u or longer is, from equation 21 the cumulative distribution 

Ri(t — u) = e-"('-u) 	 (111) 

so, by an argument exactly like that used to arrive at equation 87, the probability that a 
channel is open at time t is 

Po,„(t) = f f2(u)R,(t — u) du 	 (112) 

This differs from equation 91 only by a factor of 1/a, the mean open lifetime, so 

' 13„,n(t) = f(t)lot = 	
R [3' 

(e-5' — e') (113) 

which is, apart from its amplitude, unchanged when a and p' are interchanged. The amplitudes 
of the two exponential components are equal and opposite, being, from equation 113, 

131  a —  
(a P') 

with a maximum at tmax, which is given by 

In(437a)  

13' 

The simulated average currents in Fig. 16 are indeed well fitted by these values. 

11.3.2. The Effect of First Latency in General 

If there is more than one sort of shut state (which there invariably is for real channels), 
the possibility arises that the channel may open more than once after a pulse of agonist (or 
of membrane potential) is applied. This would, for example, be the case for the channel-
block mechanism discussed in Section 4 (see Fig. 5). It is also clearly the case for the NMDA 
receptor as shown by the experiment in Fig. 15. If there is only one open state, then the 
result given above can be generalized as follows. The probability of the channel being  open 
at time t (and hence the macroscopic current at time t) is given by the convolution of the 
first latency distribution with P JO, where the latter was defined in equation 46 as 

ti=t 

(114)  

(115)  
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Pi  ,(t) = Prob(open at time t I open at time 0). 	 (116) 

This result has been used, for example, by Aldrich et al. (1983) and by Horn and Vandenberg 
(1984) for the interpretation of experiments on sodium channels, in which measurements of 
first latency turned out to be important for investigations of the channel mechanism. 

It is important to note that P11(t) is the sort of probability that is used in the calculation 
of macroscopic currents or noise; it does not specify that the channel should be open 
throughout the time from 0 to t (as would be the case for analysis of single channels; e.g., 
see Section 4.8) but merely that it was open at 0 and at t, regardless of what happens in 
between. In fact, PI 1(0 describes the time course of the current that would be found by 
averaging single-channel records after aligning the starting points of the first opening in 
each record. 

In general, the expression for P1 i (t) will be given by the sum of k — 1 exponentials 
that have the time constants found for macroscopic relaxations (as in equation 4) (they will 
be the eigenvalues of — Q; see Section 13 and Chapter 20, this volume). These time constants 
will not, in general, be the same as those for any of the single-channel distributions. Thus, 
although the first latency distribution is a 'single-channel quantity', Pi i(t) is not, and there 
is, therefore, in general, no simple relationship between single-channel distributions and 
macroscopic currents. 

In particular, it is impossible to predict the response to a jump from measurements of 
steady-state single-channel recordings. This is generally true, though if the single channel 
recordings were made under a range of conditions and were detailed enough to allow complete 
identification of the mechanism and all its rate constants (see Section 12), then it would of 
course be possible to predict the time course of macroscopic currents. This was illustrated 
by Edmonds and Colquhoun (1992), who show that simple averaging of aligned channel 
activations (measured in steady-state records) does not reproduce the shape of the macroscopic 
currents. However, this procedure would work, to a good approximation, for muscle-type 
nicotinic receptors, which produce compact bursts of openings with a very short first latency 
and are therefore close to the situation illustrated in Fig. 2. 

If there is more than one open state, then the result stated above can be further generalized, 
using matrix methods, by what amounts to using a separate first-latency distribution for entry 
into each of the open states (see Section 13 and Chapter 20, this volume). 

12. The Time Interval Omission Problem 

The filtering effect of the recording apparatus, together with noise and sampling the 
signal at regularly spaced points in time, means that brief openings or shuttings of the ion 
channel will not be detectable. This will cause a distortion of the histograms of the distributions 
of open times and shut times that can be quite serious (see example below). 

12.1. Definition of the Problem 

We suppose in what follows that all events that are shorter than some fixed resolution 
or dead time (denote for open times, for shut times) are not detected, whereas all events 
longer than this are detected and measured accurately. The resolution is usually not well 
defined, but may be imposed retrospectively on the measurements by concatenating any 
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observed shut time below is  with the open times on each side of it to produce one long 
"apparent opening." The procedures necessary for imposition of a fixed dead time are 
discussed in Chapter 19 (this volume, Section 5.2). The effect on the distribution of open 
times that is caused by missing open times that are shorter than to  is easily allowed for (see 
Section 6.8.1 of Chapter 19, this volume). But the concatenation of adjacent open times that 
occurs when the short shut time separating them is missed is potentially far more serious 
and may cause openings to appear to be far longer than they really are. 

12.1.1. Dependence on the Method of Analysis of Experimental Records 

Before any attempt can be made to make allowance for missed events, the problem 
must be formulated precisely. The problem is to decide how to define what it is that is 
actually measured when an experimental record is analyzed. The answer to this question 
will depend, to some extent, on the method that is used for the analysis. If a threshold-
crossing method is used, it seems natural to define the dead time as the duration of an event 
that is just long enough for the signal to reach the threshold (in the absence of noise). There 
are two problems with this definition. First, the universal presence of noise will mean that 
some events that are longer than the dead time will be missed, and some events that are 
shorter than the dead time will be detected (see Chapter 19, this volume). Second, as pointed 
out by Magleby and Weiss (1990a), events that are both shorter than the dead time but are 
close together may sum to produce a signal that crosses the threshold. Both of these problems 
are less severe if the record is fitted by time-course fitting with subsequent imposition of a 
fixed dead time (see Chapter 19, this volume, Section 5.2). 

Ideally, the method used for missed-event correction should take into account the actual 
properties of the method used for analysis. Draber and Schultze (1994) have made an attempt 
to do this (though for an analysis method that has not yet been much used in practice). The 
only realistic method for doing this is the (very slow) repeated simulation of the entire 
analysis, as proposed by Magleby and Weiss (1990a). 

We now define a theoretical quantity, the apparent open time. This quantity is intended 
to be, as far as possible, what would actually be measured from an experimental record, the 
observed open time. In fact, this distinction will often be neglected, and both quantities 
referred to as apparent. The mean length of apparent openings will be denoted ep,o  (where 
the superscript e stands for effective). For the purpose of the theory, an apparent opening is 
defined as starting with an opening longer than to  (which is therefore visible); this is followed 
by any number of openings, which may be of any length but are separated by gaps that are 
all shorter than ts  and are therefore not detected; this process is ended when a shut time in 
excess of is  is observed. Short openings, less than to  are similarly treated to obtain 'apparent 
shut times'. The extent to which this definition mimics reality will, as mentioned above, 
depend on the method used to analyze experimental records. A run of short random openings 
and shuttings will, from time to time, produce signals of quite unrecognizable shape, so it 
is impossible to anticipate all possibilities. At least it is impossible to do so in any analysis 
program that allows the operator to approve or disapprove the fitted durations, and, as 
explained elsewhere, there are good reasons, unconnected with the missed-events problem, 
why it is always desirable to inspect what the computer is doing to your data. There will 
inevitably (and probably quite rightly) be a subjective element in the operator's response to 
oddly shaped signals. Fortunately, such oddities are rare in most data and so should not give 
rise to serious errors. 
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all shorter than ~s and are therefore not detected; this process is ended when a shut time in 
excess of ~s is observed. Short openings, less than ~o are similarly treated to obtain 'apparent 
shut times'. The extent to which this definition mimics reality will, as mentioned above, 
depend on the method used to analyze experimental records. A run of short random openings 
and shuttings will, from time to time, produce signals of quite unrecognizable shape, so it 
is impossible to anticipate all possibilities. At least it is impossible to do so in any analysis 
program that allows the operator to approve or disapprove the fitted durations, and, as 
explained elsewhere, there are good reasons, unconnected with the missed-events problem, 
why it is always desirable to inspect what the computer is doing to your data. There will 
inevitably (and probably quite rightly) be a subjective element in the operator's response to 
oddly shaped signals. Fortunately, such oddities are rare in most data and so should not give 
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12.1.2. Dependence on the Channel Mechanism 

It is an unfortunate fact that in order to make proper allowance for missed events, it is 
necessary to postulate a kinetic mechanism for the operation of the ion channel. When 
substantial numbers of both brief openings and brief shuttings are missed, very little can be 
done without a realistic knowledge of the mechanism, as is made clear by the discussion 
below. However, it is quite often the case, to a first approximation at least, that most openings 
are detected but many short gaps are missed (or, more rarely, the other way round). In this 
case, corrections can be made without detailed knowledge of the mechanism. When most 
openings are detected, the shut-time distribution will (apart from the lack of values below 
Ss) be quite accurate; i.e., it will have approximately the correct time constants (see Fig. 18, 
for example). We can, therefore, obtain a realistic estimate of the number (and duration) of 
missed shut times simply by extrapolating the fitted shut-time distribution to t = 0. This is 
essentially the procedure used by Colquhoun and Sakmann (1985), and it is given below 
(see equation 124). Even in this case, however, it was necessary to assume something about 
mechanisms in order to do the correction. The reason for this is that, in their data, the 
distribution of (apparent) open times or of burst lengths had two exponential components, 
so, although an estimate could be made of the number of brief shuttings that were missed, 
there was no way of knowing whether they were missed from 'long bursts' or from 'short 
bursts'. The data suggested that short bursts contained few short gaps, so, in order to perform 
the correction, it was assumed that all the missed gaps were missed from long bursts. This 
procedure was subsequently shown to behave quite well when tested by the exact procedures 
discussed below, but there can be no guarantee that it will always do so. 

We shall first discuss the (oversimplified) case in which the system has only one shut 
state and one open state. 

12.2. The Two-State Case 

Suppose the true open times and shut times both follow simple exponential distributions 
with means p,0  and p,„ respectively. Then we have 

P(shut time >) = 	 (117) 

and so 

Mean number of openings per apparent opening = 11 e- s /4's = es/P"' 	(118) 

It is well known (see Chapter 19, this volume, Sections 6.6 and 6.8) that for an exponen-
tial distribution 

Mean length of shuttings longer than s = 	+ p,s 	 (119) 

then 

Mean of shuttings less than s  = 11-1, 	1-1,$)e- '/P1/(1  — e-",) 	(120) 

because 	X (expression 119) + (1 — e-- '1P'') X (expression 120) must equal p,„ the 
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because e-EJfLs X (expression 119) + (l - e-E,lfLS) X (expression 120) must equal ~s, the 
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overall mean shut time. The mean apparent open time, denoted ep,„, is therefore E0  + 
+ 	— 1) X (expression 120), as there is one less shutting than opening contribut- 

ing to the apparent open time. Thus, 

e l-LO = 	(l10 	1-Ls)e"i's 	(s 	Rs) 
	

(121) 

Similarly, the mean apparent shut time is 

el-Ls = 	(l-Lo 	Ils)e6'41° — (to + 110) 
	

(122) 

The values of ep.0  and ells  can be estimated from the data by averaging the observed open 
and shut times; 	and s  are known, so that equations 121 and 122 are a pair of nonlinear 
simultaneous equations that can be solved numerically for the true means p.„ and p„. For 
example, obtain an expression for µs  from equation 122 and substitute it into equation 121 
to obtain an equation in p.0  only, that can be solved by bisection. It turns out that these 
equations usually have two pairs of solutions. Suppose, for example, that 0 = s = 200 p.s, 
ep,0  = 0.6 ms, and ells  = 2.0 ms. Then, there is a 'slow' solution (p.0  = 299.0 vs, p.s  = 
878.7 pis) and a 'fast' solution (p.0  = 106.3 p,s, µs  = 214.8 p.$). The slow solution implies, 
for example, that on average an observed shut time comprises 1.95 shut times separated by 
0.95 (short) open times, whereas the equivalent figures for the fast case are 6.56 and 5.56. 
In principle, the ambiguity is not quite complete because the forms of the distributions of 
observed times are predicted to be different (though they have the same means) for these 
two solutions, but in practice the difference may be too small to be useful (Hawkes et al., 
1990). Furthermore with the fast solution consisting of rapid alternation of openings and 
shuttings of duration comparable to the resolution, the apparent openings would have the 
appearance of a noisy opening of reduced amplitude. 

This problem has been further studied using an approximate likelihood method by Yeo 
et al. (1988), Milne et al. (1989), and Ball et al. (1990), yielding a likelihood with two 
almost equally high peaks. They showed that the two solutions could be resolved by making 
additional analyses in which and are changed, the real solution remains the same, and 
the false one is altered. 

The above model, assuming fixed resolution, is used throughout this section, but Draber 
and Schultze (1994), following Magleby and Weiss (1990a), used a (theoretically) specified 
model of a detector (see above), and in the two-state problem they obtain the alternative 
result, in the case 	= 

e 1 — 	 
(I-Lo 	I-Ls) 

	

{

211°11s 
 II 	 k(P60 P-s) 1-1Ze(ills-°1°)  1-101-L, (123) 

(I-Lo JJ 

with a similar result for 7_11, the subscripts o and s being interchanged. These results are 
close to those given by equations 121 and 122 if p.0  and µs  are greater than about 

12.2.1. The Case when Only Gaps Are Missed 

If openings are long enough that very few are missed, then the results simplify. Thus, 
if to < 110, equation 122 reduces to ell, =s  + !Is. The openings, however, are still extended 
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1 
e/-Lo=----

(/-Lo - /-LJ 

X { (2/-L~/-Ls) [1 - e(~/ .... s-~/ .... o)] + ~(/-Lo + /-Ls) - /-L~eW .... s-~/ .... o) - /-LO/-Ls} (123) 
/-Lo /-Ls 

with a similar result for e/-Ls, the subscripts 0 and s being interchanged. These results are 
close to those given by equations 121 and 122 if /-Lo and /-Ls are greater than about 2~. 

12.2.1. The Case when Only Gaps Are Missed 

If openings are long enough that very few are missed, then the results simplify. Thus, 
if ~o <lS /-Lo, equation 122 reduces to e/-Ls = ~s + /-Ls. The openings, however, are still extended 
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by missing gaps, but, as pus  is now known from this result, equation 121 can be solved for 
[Lc, as 

tio = 	 — So) + (Ss + L,$)] — its 
	 (124) 

Analogous results, interchanging o and s, can be obtained if shut times are long. 

12.2.2. Bursts of Openings 

We consider here only the case in which most openings are detected but many shut 
times within a burst are undetected. As before, this implies that gaps will rarely be extended 
by undetected openings, so if p.g  now denotes the true mean length of gaps within bursts, 
the observed mean length of such gaps will again be ks  + p.g. Since we have assumed that 
most openings are detectable, the mean length of the observed burst will be close to the true 
mean burst length. Thus, both intraburst gap lengths and burst lengths can be estimated from 
the data. However, the apparent openings will be longer than the true openings, and the 
observed number of openings per burst will be correspondingly too small. It is for this reason 
that Colquhoun and Sakmann (1985) presented primarily distributions of gap lengths and 
burst lengths but not those of apparent open times or of the number of apparent openings 
per burst. 

Corrected means for the last two distributions can be obtained as follows for the case 
in which the true openings and the true gaps within a burst each have simple exponential 
distributions. The burst distribution is fitted to give an estimate of the mean burst length, 

µb„, and the number of bursts, Nb„, each of which should be close to the true values. The 
distribution of lengths of gaps within bursts is fitted to give estimates of their true length, 
lig, and of their true number, Ng, which may be considerably greater than the observed 
number, ns  = Nge-,111g. The true number of gaps per burst, p.,„ is estimated as the total 
number of gaps divided by the total number of bursts, so lir  = Ng/Nbst. The true mean open 
time can be estimated by noting that the mean total shut time per burst including undetected 
gaps, is p.gp.r , so 

mean open time per burst 
110 = 	 ILbst 	 1) mean number of openings per burst 

(125) 

This is essentially the correction employed by Colquhoun and Sakmann (1985). 

12.3. The General Markov Model 

The previous section discussed only the two-state case and was concerned only with 
the means of the apparent observed open times and of observed shut times, according to 
particular assumptions about how these arise from the inability to observe small intervals. 
We need to extend this to models of channel action with any number of shut states and open 
states; we also need to predict the distributions of observed quantities, not only their means. 
So far, this has been achieved only in the case where all open states have the same conductance. 
Several approximate methods have been described, for example by Blatz and Magleby 
(1986), Yeo et al. (1988), and Crouzy and Sigworth (1990), in each case approximating the 
distributions by mixtures of exponential distributions. An exact solution in terms of Laplace 
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transforms was obtained by Ball and Sansom (1988b) following earlier work by Roux and 
Sauve (1985). 

Hawkes et al. (1990) obtained the exact algebraic forms of these probability density 
functions in the case Eo  = Es; they presented some numerical examples that suggested that 
the best of the mixed-exponential approximations was that of Crouzy and Sigworth (1990). 
Unlike the distributions of true open times or shut times, they are not mixtures of exponentials 
but are sums of exponentials multiplied by polynomials in t; a different form holds over 
different ranges of length k, so that over the interval 	< t < (r + 1)] the multiplying 
polynomials are of degree (r — 1); the density is, of course, zero for t < These distributions 
are reasonably easy to compute for small t but get progressively more complicated as t 
increases and eventually become numerically unstable. An alternative approach by Ball and 
Yeo (1994) is based on numerical solution of a system of integral equations. .Ball et al. 
(1991, 1993b) obtained a solution, in terms of Laplace transforms, in the more general setting 
of semi-Markov processes (which includes fractal and diffusion models as well as the Markov 
model discussed here). Ball et al. (1993a) showed that a general result of Hawkes et al. 
(1990), from which the above result specific to Markov models was obtained, can be extended 
into this more general setting. 

Jalali and Hawkes (1992a,b) (see also Hawkes et al., 1992) obtained asymptotic forms 
for these probability densities that are extremely accurate except possibly for quite small 
values of t. They recommend using the exact form for t < 3E and the asymptotic form for 
t > 3E. Brief details are given in Section 13.7. The asymptotic distribution not only has the 
form of a mixture of exponentials, but it also has the same number of exponential components 
as the true distribution (that which would be found if no intervals were missed). However, 
the values of the time constants and of their associated areas may be quite different. It is 
this asymptotic form that would be estimated when fitting a mixture of exponentials to 
experimentally observed time intervals using the methods described in Chapter 19 (this 
volume, Section 6.8). 

We consider the mechanism of scheme 110 (see also equation 127), which has two 
open states and three shut states, with parameter values a l  = 3000 s', a2 = 500 	[31  
= 15 s", [32  = 15,000 s-1, k+i  = 5 x 107  M"s", k+2 = k*,2  = 5 X 108  M's", k_ 1  = 
k_2  = 2000 s", k*_2  = (1/3) s-1, and agonist concentration xA  = 0.1 1.1M. A set of data, in 
the form of a sequence of open and shut times, was simulated from this model; a resolution 
of 50 las (for both open and shut times) was then imposed on the record (see Chapter 19, 
this volume, Section 5.2) to produce a sequence of 10,240 apparent open times alternating 
with 10,240 apparent shut times. We will refer to this as the simulation model for the 
remainder of this section. 

The true open time distribution has two exponential components with time constants 
2.00 ms and 0.328 ms with corresponding areas of 0.928 and 0.072, giving an overall mean 
of 1.88 ms. Figure 17 shows the theoretical distribution of the logarithm of apparent open 
times (see Section 5.1.2 of Chapter 19, this volume), and this compares well with a histogram 
arising from the simulation. The true distribution of open times is shown for comparison. 
Compared with the true distribution, the distribution of apparent open times has been shifted 
to the right, having a mean of 3.52 ms rather than 1.88 ms; this shift is not caused by missing 
the short open times but results from missing the short shut times. 

The distribution of apparent open times does not have a mixed exponential form for 
small t, but for t > 3E it is very well approximated by the asymptotic distribution, which is 
a mixture of exponentials. This gives us another way of comparing the true and apparent 
distributions. First note that the pdf of apparent open times is zero below the dead time, 
t = E, whereas the true open time pdf starts at t = 0; thus, in order to compare the relative 
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Figure 17. Probability density of the logarithm of open times for the model defined in the text. The solid 
line is the theoretical distribution of apparent open times for the case when the dead time is t = 50 	The 
histogram shows the distribution of 10,240 open times, which were simulated on the basis of this model and 
then subsequently had a resolution of 50 µs imposed, as described in Section 5.2 of Chapter 19 (this volume). 
The dashed line shows the true distribution of open times, scaled to predict the correct number of observations 
greater than t = 

areas of components of the true distribution with those of the asymptotic distribution of 
apparent open times, it is necessary to project the exponentials of the asymptotic distribution 
back to t = 0. When this is done, we obtain an approximate distribution with time constants 
of 3.89 ms and 0.328 ms with corresponding areas of 0.869 and 0.131 (so the overall mean 
is 3.42 ms, which is close to that of the exact distribution of apparent open times). Comparing 
this with the true distribution, we see that the short time constant remains virtually the same 
but the longer one has almost doubled. This happens because, according to the mechanism 
used for the example, most of the short shut times occur in (and are therefore missed from) 
the 'long bursts' (see also Section 12.1). 

Let us turn now to the distribution of shut times. The true distribution of all shut times 
in this example is a mixture of three exponentials with time constants of 3789 ms, 0.485 
ms, and 53 Rs, with areas of 0.262, 0.008, and 0.730, respectively. The distribution of 
apparent shut times, for t > 3, is well approximated by the asymptotic form of this 
distribution, which is a mixture of three exponentials with time constants of 3952 ms, 0.485 
ms and 54 Rs; the areas are 0.263, 0.008, and 0.729, respectively (when the asymptotic 
distribution is projected back to t = 0, as above). Apart from a slightly increased long time 
constant, this is almost identical with the true distribution. This is illustrated in Fig. 18, 
which shows the logarithmic plots of apparent shut times and true shut times. When the 
latter are scaled to consider only intervals greater than 	they are almost identical. 

The reason for these two different types of behaviour is that the true shut time distribution 
has an important component, area 0.730, with a time constant of 53 Rs, which is almost the 
same length as the dead time; many of these will be missed, leading to concatenated open 
times. In contrast, the shortest open time constant is more than six times the dead time, so 
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areas of components of the true distribution with those of the asymptotic distribution of 
apparent open times, it is necessary to project the exponentials of the asymptotic distribution 
back to t = O. When this is done, we obtain an approximate distribution with time constants 
of 3.89 ms and 0.328 ms with corresponding areas of 0.869 and 0.131 (so the overall mean 
is 3.42 ms, which is close to that of the exact distribution of apparent open times). Comparing 
this with the true distribution, we see that the short time constant remains virtually the same 
but the longer one has almost doubled. This happens because, according to the mechanism 
used for the example, most of the short shut times occur in (and are therefore missed from) 
the 'long bursts' (see also Section 12.1). 

Let us tum now to the distribution of shut times. The true distribution of all shut times 
in this example is a mixture of three exponentials with time constants of 3789 ms, 0.485 
ms, and 53 J..LS, with areas of 0.262, 0.008, and 0.730, respectively. The distribution of 
apparent shut times, for t > 3~, is well approximated by the asymptotic form of this 
distribution, which is a mixture of three exponentials with time constants of 3952 ms, 0.485 
ms and 54 J..LS; the areas are 0.263, 0.008, and 0.729, respectively (when the asymptotic 
distribution is projected back to t = 0, as above). Apart from a slightly increased long time 
constant, this is almost identical with the true distribution. This is illustrated in Fig. 18, 
which shows the logarithmic plots of apparent shut times and true shut times. When the 
latter are scaled to consider only intervals greater than ~, they are almost identical. 

The reason for these two different types of behaviour is that the true shut time distribution 
has an important component, area 0.730, with a time constant of 53 J..Ls, which is almost the 
same length as the dead time; many of these will be missed, leading to concatenated open 
times. In contrast, the shortest open time constant is more than six times the dead time, so 
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Figure 18. Probability density of the logarithm of shut times for the model defined in the text. The solid 
line is the theoretical distribution of apparent shut times when the deadtime = 50 Rs. The histogram shows 
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50-p.s resolution. The dashed line showing the true distribution of shut times, scaled as described for Fig. 
17, is virtually indistinguishable from the distribution of apparent shut times when t > 

few open times will be missed. Thus, the distribution of shut times is almost undistorted in 
the sense that fitting the observed values with exponentials will give something close to the 
true time constants and areas (though the overall average of the observed values would be 
considerably increased, from 993 ms to 1855 ms, because of missing short shut times). 

12.4. Joint Distributions of Adjacent Intervals 

Magleby and co-workers (Blatz and Magleby, 1989; Weiss and Magleby, 1989; McManus 
and Magleby, 1989; Magleby and Weiss, 1990a,b) have used extensive simulation to show 
that the joint distribution of adjacent apparent open times and shut times can be very useful 
in distinguishing between different mechanisms that have very similar overall distributions 
of these variables when considered separately. They also use them for parameter estimation. 
The extra information concerning the relationship between the durations of neighbouring 
intervals is very valuable (see Sections 10 and 11). 

The methods of Hawkes et al. (1992) described above can also be used to obtain the 
theoretical joint distributions of the adjacent apparent open and closed intervals, allowing 
for time interval omission. The appropriate formulas are outlined in Section 13.7; more 
detailed formulas and software to calculate and display these distributions are given by 
Srodzinski (1994). 
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few open times will be missed. Thus, the distribution of shut times is almost undistorted in 
the sense that fitting the observed values with exponentials will give something close to the 
true time constants and areas (though the overall average of the observed values would be 
considerably increased, from 993 ms to 1855 ms, because of missing short shut times). 

12.4. Joint Distributions of Adjacent Intervals 

Magleby and co-workers (Blatz and Magleby, 1989; Weiss and Magleby, 1989; McManus 
and Magleby, 1989; Magleby and Weiss, 1990a,b) have used extensive simulation to show 
that the joint distribution of adjacent apparent open times and shut times can be very useful 
in distinguishing between different mechanisms that have very similar overall distributions 
of these variables when considered separately. They also use them for parameter estimation. 
The extra information concerning the relationship between the durations of neighbouring 
intervals is very valuable (see Sections 10 and II). 

The methods of Hawkes et al. (1992) described above can also be used to obtain the 
theoretical joint distributions of the adjacent apparent open and closed intervals, allowing 
for time interval omission. The appropriate formulas are outlined in Section 13.7; more 
detailed formulas and software to calculate and display these distributions are given by 
Srodzinski (1994). 
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Figure 19A shows the distribution of apparent open times that are adjacent to short 
shut times (i.e., those less than 150 Rs) for our simulation example. Note again the good 
correspondence between theory and simulation. Compared with the overall distribution of 
apparent open times there are relatively few short open times. Figure 19B shows equivalent 
results for apparent open intervals adjacent to long apparent shut times (greater than 10 ms). 
This time we see an excess of short open times. The complementary features of these two 
graphs are a representation of a negative correlation between adjacent apparent open times 
and apparent shut times. This is illustrated another way in Fig. 19C, which shows how the 
mean apparent open time, calculated from the above theory, decreases for intervals adjacent 
to larger apparent shut times. This graph shows a continuous but very nonlinear decline. In 
practice, shut-time ranges must be used, as in the experimental example in Fig. 12, so the 
graph is not continuous. The model and parameter values used for Figs. 17 to 19 are based 
on observations for the frog muscle nicotinic receptor; the form of the decline for the NMDA 
receptor, illustrated in Fig. 12, is more linear than that plotted in Fig. 19C. 

It is worth noting that time interval omission can induce a correlation not present in 
the true record. For example, model I of Blatz and Magleby (1989) has two open states 
whose mean lifetimes are almost the same; the discussion in Section 10.1 implies that there 
should be little correlation between adjacent true intervals (none at all if the means are 
identical). Nevertheless, there is quite strong negative correlation between observed open 
times and adjacent observed shut times. The reason for this can be explained with respect 
to a modified version of our simulation model, which then becomes a simpler version of 
Blatz and Magleby's model. Modify our model so that direct interchange between the two 
open states is impossible, and make a l  = a2, so the mean lifetimes of the two open states 
are the same. Now open state 2 is next to shut state 3, which has a mean life of 53 jis (just 
larger than the dead time of 50 p.$) with a high probability of returning to state 2, so that 
successive open sojourns in state 2 are likely to be concatenated with short sojourns in state 
3 to form long apparent open times, which are likely to be adjacent to short apparent shut 
times. State 1, however, is next to state 4, which not only has a mean life of 455 ti,s but is 
highly likely to result in a subsequent visit to the very long-lived shut state 5. Thus, open 
sojourns in state 1 are likely to be isolated and therefore constitute relatively short apparent 
open times adjacent to quite long apparent shut times. A negative correlation therefore appears 
between the adjacent apparent times, although there is none between true adjacent times. 

12.5. Maximum-Likelihood Fitting 

The ability to calculate the theoretical distributions of things that are actually observed 
(rather than of what would be observed if the resolution was perfect) opens the way to fitting 
a specified mechanism directly to the data. Previously, one could only fit empirical mixtures 
of exponentials separately to open times, shut times, bursts lengths, etc., but to interpret 
these results in terms of a mechanism and to estimate from them the values of the underlying 
mass-action rate constants are feasible only approximately and in simple cases. In any case, 
such methods are very ad hoc and almost certainly inefficient. It is, for example, far from 
obvious how to combine the (often overlapping) information from fitting various different 
sorts of distribution. For example, the distributions of burst length and of total open time 
per burst contain different but overlapping information about the burst structure in the data. 

However, by using the above distributions for apparent open and shut times, i.e., the 
distributions of what is actually observed, it is possible to calculate the likelihood for an 
entire single-channel record, represented as an alternating sequence of open and shut times. 
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Adjacent shut time 	(log scale) 

Figure 19. A shows the theoretical distribution (solid line) of apparent open times that are adjacent to short 
apparent shut times (less than 150 p.$). The histogram shows the distribution of simulated (see text) values 
of the same quantity. The dashed line corresponds to the overall theoretical distribution of apparent open 
times, given in Fig. 17. B shows similar results for openings adjacent to long apparent shut times (greater 
than 10 ms). C shows the plot of the theoretical mean of apparent open times that are adjacent to apparent 
shut times of a given duration, against the logarithm of the shut time. 
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Figure 19. A shows the theoretical distribution (solid line) of apparent open times that are adjacent to short 
apparent shut times (less than 150 II-s). The histogram shows the distribution of simulated (see text) values 
of the same quantity. The dashed line corresponds to the overall theoretical distribution of apparent open 
times, given in Fig. 17. B shows similar results for openings adjacent to long apparent shut times (greater 
than \0 ms). C shows the plot of the theoretical mean of apparent open times that are adjacent to apparent 
shut times of a given duration, against the logarithm of the shut time. 
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This calculation takes the form of an enormous number of matrix multiplications, the calcula-
tion for the first opening provides the appropriate initial condition for the calculation for the 
subsequent shut time, which in turn provides an appropriate initial condition for the next 
opening, and so on up to the end of the data (see Section 13.7). Thus, the order in which 
openings and shuttings occur, and so information about correlations between the durations 
of neighbouring intervals, is taken into account correctly; in contrast, the separate distributions 
of apparent open and shut times, described above, lose this information. The calculations 
are done in a manner similar to that used by Ball and Sansom (1989), following earlier work 
by Horn and Lange (1983), assuming ideal data (t = 0). 

With this approach, the parameters to be fitted are the actual mass-action rate constants 
in the reaction mechanism (not empirical time constants and areas). The values of these 
parameters are adjusted by a suitable search routine so as to maximize the likelihood for the 
entire record. We have found this to be quite feasible on a fast PC for a record consisting 
of several thousand intervals. Furthermore, it is possible to fit simultaneously data from several 
different sorts of measurement, for example, recordings made with different concentrations of 
agonist. 

Thus, we do not have to fit separately all of the sorts of distribution mentioned above. 
However, it will be useful for model validation to compare observed histograms with theoreti-
cal distributions calculated from the model, especially the joint distributions of adjacent open 
and shut times, using values of the parameters fitted by the maximum-likelihood method. 

The likelihood itself can be used to judge the relative merits of alternative postulated 
mechanisms. If each of the proposed mechanisms is fitted to the same data, the relative 
plausibility of each mechanism can be assessed from how large its maximised likelihood is; 
this was done, for example, by Horn and Vandenberg (1984) (without missed-event correc-
tion). 

On the basis of the data from our simulation example above, the free parameters were 
adjusted (by a simplex method) to maximise the likelihood of the sequence. A comparison 
of the true and estimated parameter values is given in Table I. These agree very well, but 
in some cases, especially with less data, one would expect that some parameters in a 
mechanism would be estimated quite well and others poorly. This feature depends on the 
nature of the mechanism (e.g., rates leading from a state that is rarely visited will be poorly 
estimated) and is found in other methods of estimation (see Fredkin and Rice, 1991). 

Table I. Comparison of True and Estimated Parameters from a Simulation of Mechanism 110 

Parameter True value Estimated value° Units 

oi l  3000 2848 s-I  
a2  500 521.4 s-' 

RI 15 15.74 5-I  

132 15,000 15,592 s- I 

2k, , 
k,-2 

1 X 108  
5 X 108  

9.529 x 10' 
5.103 X 108  

M-IS-1  

M- I S-1  
kt2 5 X 108  5.103 x 108  M-Is-I  
k_, 2000 1960 s- I  
2k_2  4000 3919 s- ' 
2k1', 0.666667 0.7243 5-I  

"Note that parameter estimates have been constrained so that k_, = k_ 2  and k., = kt.2  and microscopic reversibility 
is preserved. 
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13. A More General Approach to the Analysis of Single-Channel 
Behaviour 

It would involve a great deal of work if the sort of analysis given for the channel-block 
mechanism (Section 4) had to be repeated for every type of mechanism that one wished to 
consider. Furthermore, it is found that the approach given above is not sufficiently general 
to allow analysis of some mechanisms that are of direct experimental interest. In particular, 
mechanisms with more than one open state and/or cyclic reactions cannot be analyzed by 
the relatively simple methods used so far. Consider, for example, the mechanism in equation 
110, which has two open states (labelled 1 and 2) and three shut states. 

We shall assume that the conductance of the two open states is the same, so, during a 
single opening, there may be any number of oscillations between them: AR* 	A2R*. 
Similarly a gap within a burst may involve any number of oscillations between AR 	A2R. 
The analysis is further complicated by the fact that there are two different ways in which 
the opening may start (via AR —> AR* or A2R —> A2R*) and, correspondingly, two routes 
by which the opening may end. Clearly, the probability that an opening starts by one of 
these routes rather than the other will depend on how the previous opening ended. One 
would expect, for example, that the first opening in a burst is more likely to start via AR 
-4 AR* than subsequent openings because the start of a burst must involve passage through 
AR, whereas a gap within a burst may be spent entirely in A2R. 

In Section 4.6, the distribution of the number of openings per burst was found by simple 
multiplication of probabilities for the routes through the burst. In the present example there 
are many different possible routes through a burst, and the only way in which it is practicable 
to find the appropriate combination of probabilities is to describe them by matrix multiplica-
tion. It turns out that matrix notation is very convenient for this sort of problem. By its use 
one can write down just a few equations for equilibrium single-channel behaviour (Colquhoun 
and Hawkes, 1982). This enables a single computer program to be written that will evaluate 
numerically the predicted behaviour of any mechanism, given only the transition rates between 
the various states. Chapter 20 (this volume) contains details of various matrix results and 
methods of computation; we suggest that it be read in conjunction with this section. 

13.1. Specification of Transition Rates 

The transition rates are most conveniently specified in a table or matrix (denoted Q), 
with the entry in the ith row and jth column (denoted qi„) representing the transition rate 
from state i to state j (as already defined in equation 7). This fills the whole table except 
for the diagonal elements (i = j). These, it turns out, are most conveniently filled with a 
number such that the sum of the entries in each row is zero. Thus, from rule 24, —1/q„ is 
the mean lifetime of a sojourn in the ith state, as is clear from the following examples. For 
the simple channel-block mechanism (equation 29) with k = 3 states, we have 

1 2 3 

1 (a + k+BxB) k+BxB et 

Q = 2 k_ g  k _ B  0 (126) 

3 R' 0 -13' 

Similarly, for the more complex agonist mechanism in scheme 110, with k = 5 states, 
we have 
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( 126) 

Similarly, for the more complex agonist mechanism in scheme 110, with k = 5 states, 
we have 
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2 2k'1`2 -(a2 	2k* 2) a2 0 0 

Q = 3 0 132 -( 32 + 2E2) 2k_2  0 

4 13  k+2xA — (131 k+2xA k_1) 	k-1 

5— 0 0 2k+ixA —2k+  i xA_ 

(127) 

where xA  is the agonist concentration. This matrix, with some specific parameter values, was 
used for some numerical examples in Section 12 and in Chapter 20 (this volume). Notice 
that these two examples illustrate the convenient numbering convention for the states that 
underlies the notation introduced by Colquhoun and Hawkes (1982). The open states have 
the lowest numbers (1..... k), and shut states have the higher numbers. For the purpose 
of analysis of bursts, short-lived shut states are given lower numbers than long-lived shut 
states. This convention allows convenient partitioning of the Q matrix into subsections. This 
partitioning is shown explicitly in Section 2 of Chapter 20 (this volume), and is used 
throughout this section. 

13.2. Derivation of Probabilities 

The probabilities that are needed for noise and relaxation analysis, which were defined 
as 13,1(t) in equation 8, can be considered as elements of a matrix, which we shall denote 
P(t). It can be found by solution of a differential equation: 

dP(t)I dt = P(t)Q 	 (128) 

The solution is, quite generally, 

P(t) = eQt 	 (129) 

This has a matrix in the exponent, but its evaluation requires only operations of matrix 
addition and multiplication, because the exponential is defined in terms of its series expansion: 

eQ` = I + Qt + (Qt)2 //2! + • • • 	 (130) 

where I is a unit matrix (unit diagonals, zeroes elsewhere). In practice, this is not the most 
convenient way to evaluate the exponential term (see Chapter 20, this volume); in fact, each 
element of P(t) (and hence the relaxation or the autocovariance function of noise) can be 
written in terms of the sum of k — 1 exponential terms of the form 

13,1 (t) = p,(00 ) + 	+ wee-x2 r + • • 	 (131) 

In this expression p;  (x) is the equilibrium probability that the system is in state j, which 
Pi  (t) must approach after a long time (t —> oc). The coefficients w, can be determined from 
Q by the methods described in Chapter 20 (this volume; see Colquhoun and Hawkes, 1977, 
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2 3 4 5 

-(0:1 + kt2XA) kt2XA 0 0:1 0 

2 2k'!2 -(0:2 + 2k'!2) 0:2 0 0 
Q= 

3 0 132 -(132 + 2L2) 2L2 0 

4 131 0 k+2XA -(131 + k+2XA + L I) LI 

5 0 0 0 2k+ I XA -2k+ I XA 

(127) 

where XA is the agonist concentration. This matrix, with some specific parameter values, was 
used for some numerical examples in Section 12 and in Chapter 20 (this volume). Notice 
that these two examples illustrate the convenient numbering convention for the states that 
underlies the notation introduced by Colquhoun and Hawkes (1982). The open states have 
the lowest numbers (1, ... , k,s!I), and shut states have the higher numbers. For the purpose 
of analysis of bursts, short-lived shut states are given lower numbers than long-lived shut 
states. This convention allows convenient partitioning of the Q matrix into subsections. This 
partitioning is shown explicitly in Section 2 of Chapter 20 (this volume), and is used 
throughout this section. 

13.2. Derivation of Probabilities 

The probabilities that are needed for noise and relaxation analysis, which were defined 
as Pij(t) in equation 8, can be considered as elements of a matrix, which we shall denote 
P(t). It can be found by solution of a differential equation: 

dP(t)ldt = P(t)Q (128) 

The solution is, quite generally, 

P(t) = eQ1 (129) 

This has a matrix in the exponent, but its evaluation requires only operations of matrix 
addition and multiplication, because the exponential is defined in terms of its series expansion: 

eQ1 = I + Qt + (Qt)2112! + ... (130) 

where I is a unit matrix (unit diagonals, zeroes elsewhere). In practice, this is not the most 
convenient way to evaluate the exponential term (see Chapter 20, this volume); in fact, each 
element of P(t) (and hence the relaxation or the autocovariance function of noise) can be 
written in terms of the sum of k - 1 exponential terms of the form 

(131) 

In this expression Pj(oo) is the equilibrium probability that the system is in state j, which 
Pij(t) must approach after a long time (t ~ 00). The coefficients Wi can be determined from 
Q by the methods described in Chapter 20 (this volume; see Colquhoun and Hawkes, 1977, 
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1981, 1982, for details). The rate constants X1, which were found by solution of a quadratic 
in equations 30 and 53, are found, in general, as the solution of a polynomial of degree 
k - 1 that can be derived from Q. They are known as the eigenvalues of Q (actually, the 
eigenvalues of -Q). One of the eigenvalues is zero, as Q is singular, leaving only k - 1 
further eigenvalues to find. Standard computer subroutines exist for finding them. These 
methods are discussed in Chapter 20 (this volume) together with the use of eQ` in describing 
the relaxation of the macroscopic current toward equilibrium following a jump. General 
methods for the calculation of the equilibrium occupancies directly from the Q matrix are 
given in Section 3 of Chapter 20 (this volume). 

For the analysis of single channels, however, we usually need a different sort of probabil-
ity, one that requires that we stay within a specific subset of states throughout the whole 
time from 0 to t. An example of such a probability was defined in equation 47 and explicitly 
derived in equations 48-54 when the distribution of the burst length for the channel block 
mechanism (equation 29) was considered. In that case, we specified in equation 47 that we 
stayed within the burst (i.e., in state 1 or 2) from 0 to t. It will be convenient to give a 
symbol t, say, to this set of 'burst states' and to denote the number of such states as ke (Ict  
= 2 in this case). Similarly, in the case of the more complex agonist mechanism of equation 
110, 	would consist of states 1, 2, 3, and 4, and ke  = 4. Probabilities such as that in 
equation 47 will be denoted, by analogy with equation 8, as Pi'i (t), in which the subscripts 
i and j can stand for any of the '6 states. In the case of burst length, we can appropriately 
denote the (kg  X 4) matrix of such quantities as IN (t), and it is given quite generally by 

Pet(t) = eQtt 	 (132) 

where Qzt  is the submatrix of Q relevant to the burst states. In the case of the simple 
channel-block mechanism, for example, this is the top left-hand corner of expression 126: 

Qtt = 
k-B 	- k _B  

Notice that equation 132 is analogous to 129, although it is rather simpler because it 
involves a smaller matrix. The upper left-hand element of Pve(t) is P; 1 (t), which has already 
been derived in equation 52. In general, the elements of Pet(t) can be expressed as the sum 
of kg  exponential terms; the rate constants for these terms (e.g., those given in equation 53 
for simple channel block) are given by the eigenvalues of -4;),  (which are ice  in number, 
not k<4. — 1, because Qvg, unlike Q, is not singular). 

13.3. The Open-Time and Shut-Time Distributions 

A similar procedure can be followed for any other specified subset of states. The result 
will always involve a sum of exponential terms, the number of terms being equal to the 
number of states. For example, let us denote the set of open states as ,91; this would contain 
state 1 only for the simple mechanisms in equations 1 and 59, but it would contain states 1 
and 2 for the more complex mechanism in equation 110. Again, we can define the subsection 

+ k+BxB) k+Bx1 (133) 
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1981, 1982, for details). The rate constants h. j , which were found by solution of a quadratic 
in equations 30 and 53, are found, in general, as the solution of a polynomial of degree 
k - 1 that can be derived from Q. They are known as the eigenvalues of Q (actually, the 
eigenvalues of -Q). One of the eigenvalues is zero, as Q is singular, leaving only k - 1 
further eigenvalues to find. Standard computer subroutines exist for finding them. These 
methods are discussed in Chapter 20 (this volume) together with the use of eQ1 in describing 
the relaxation of the macroscopic current toward equilibrium following a jump. General 
methods for the calculation of the equilibrium occupancies directly from the Q matrix are 
given in Section 3 of Chapter 20 (this volume). 

For the analysis of single channels, however, we usually need a different sort of probabil
ity, one that requires that we stay within a specific subset of states throughout the whole 
time from 0 to t. An example of such a probability was defined in equation 47 and explicitly 
derived in equations 48-54 when the distribution of the burst length for the channel block 
mechanism (equation 29) was considered. In that case, we specified in equation 47 that we 
stayed within the burst (i.e., in state 1 or 2) from 0 to t. It will be convenient to give a 
symbol <g, say, to this set of 'burst states' and to denote the number of such states as k'f, (k'f, 
= 2 in this case). Similarly, in the case of the more complex agonist mechanism of equation 
110, <g would consist of states 1, 2, 3, and 4, and k'f, = 4. Probabilities such as that in 
equation 47 will be denoted, by analogy with equation 8, as P:j(t), in which the subscripts 
i and j can stand for any of the ~ states. In the case of burst length, we can appropriately 
denote the (k'f, X k'f,) matrix of such quantities as P'f,'f,(t), and it is given quite generally by 

P'f,'f,(t) = ecn'f,l (132) 

where Q'f,'f, is the submatrix of Q relevant to the burst states. In the case of the simple 
channel-block mechanism, for example, this is the top left-hand comer of expression 126: 

(133) 

Notice that equation 132 is analogous to 129, although it is rather simpler because it 
involves a smaller matrix. The upper left-hand element of P'f,'f,(t) is Pi I (t), which has already 
been derived in equation 52. In general, the elements of p'&'f,(t) can be expressed as the sum 
of k'f, exponential terms; the rate constants for these terms (e.g., those given in equation 53 
for simple channel block) are given by the eigenvalues of -Q'f,'f, (which are k'f, in number, 
not k'f, - 1, because Q'f,'f" unlike Q, is not singular). 

13.3. The Open-Time and Shut-Time Distributions 

A similar procedure can be followed for any other specified subset of states. The result 
will always involve a sum of exponential terms, the number of terms being equal to the 
number of states. For example, let us denote the set of open states as s1; this would contain 
state 1 only for the simple mechanisms in equations I and 59, but it would contain states I 
and 2 for the more complex mechanism in equation 110. Again, we can define the subsection 
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of Q that concerns transitions within .91 states; for the mechanism in equation 110, this 
consists of the top left-hand 2 X 2 section of matrix 127: 

[
— (et I + kt2XA) 

Q.94A = 2k2 
Ict2xA 

—(a2  + 2e2) 
(134) 

whereas for the channel-block mechanism 29, with only one open state, we have simply, 
from equation 126: 

Qs4s4 = (a+ k+BxB). 	 (135) 

In general, we can write (see Colquhoun and Hawkes 1977, 1981, 1982) the distribution 
of open times as 

f(t) = (l)eQ"'( —Q.4,4)usa 	 (136) 

with mean 

m  = 	sist)u.9) 

An alternative way to write the same thing is 

f(t) = 
	

(137) 

where ; represents the set of shut states, and we define (as in equation 142 below) 

G,„6.-(t) 

The result in equation 136 is an exact matrix analogue of the simple exponential distribution 
in equation 22 with —Q:4,4 replacing a. All that has been added are an initial vector (I), 
which specifies the relative probabilities of an opening starting in each of the open states, 
and a final vector, u,A, with kg (the number of open states) unit elements. Despite the 
simple appearance of equation 136, it is perfectly general; it works for any mechanism, 
however complex. 

In general, different classes of open times will have different distributions, determined 
by supplying an appropriate initial vector 4. For example, the distribution of all open times 
in a steady-state record is found by using (!po, defined in Chapter 20 (this volume, equation 
42). The appropriate 43 for open times after a jump are considered below, and cases such as 
the first or last opening in a burst are given by Colquhoun and Hawkes (1982). In some 
cases, when considering certain specified open times in the middle of a burst, the vector u 
must be replaced by another vector that describes the way in which a burst ends (see 
Colquhoun and Hawkes, 1982). 

If there is only one open state, both .4) and u, are unity and so can be omitted, and in 
this case all classes of open times have the same distribution: for example, insertion of 
equation 135 into 136 gives the result, already derived (see Section 4.3), that the open time 
is described by a simple exponential distribution with mean 1/(a + k+ BxB). 

More generally, equation 136 can be expressed without use of matrices as a sum of 
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of Q that concerns transitions within .il states; for the mechanism in equation 110, this 
consists of the top left-hand 2 X 2 section of matrix 127: 

(134) 

whereas for the channel-block mechanism 29, with only one open state, we have simply, 
from equation 126: 

(l35) 

In general, we can write (see Colquhoun and Hawkes 1977, 1981, 1982) the distribution 
of open times as 

(l36) 

with mean 

An alternative way to write the same thing is 

(l37) 

where ?:fo represents the set of shut states, and we define (as in equation 142 below) 

The result in equation l36 is an exact matrix analogue of the simple exponential distribution 
in equation 22 with -Q,s4,s4 replacing u. All that has been added are an initial vector <1>, 
which specifies the relative probabilities of an opening starting in each of the open states, 
and a final vector, U,s4, with k,s4 (the number of open states) unit elements. Despite the 
simple appearance of equation 136, it is perfectly general; it works for any mechanism, 
however complex. 

In general, different classes of open times will have different distributions, determined 
by supplying an appropriate initial vector <1>. For example, the distribution of all open times 
in a steady-state record is found by using <1>0, defined in Chapter 20 (this volume, equation 
42). The appropriate <1> for open times after a jump are considered below, and cases such as 
the first or last opening in a burst are given by Colquhoun and Hawkes (1982). In some 
cases, when considering certain specified open times in the middle of a burst, the vector U,s4 
must be replaced by another vector that describes the way in which a burst ends (see 
Colquhoun and Hawkes, 1982). 

If there is only one open state, both <1> and U,s4 are unity and so can be omitted, and in 
this case all classes of open times have the same distribution: for example, insertion of 
equation l35 into l36 gives the result, already derived (see Section 4.3), that the open time 
is described by a simple exponential distribution with mean lI(u + k+BXB)' 

More generally, equation 136 can be expressed without use of matrices as a sum of 
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exponential terms, the number of terms being equal to the number of open states and the 
rate constants being the eigenvalues of —QA,4, as described in Chapter 20 (this volume). 

The distribution of shut times is exactly equivalent to that for open times given above, 
but we use the matrix Q,, instead of Q.,,E4  and replace u.91  by a vector uy, containing k3.- unit 
elements, where 2T,  denotes the set of all shut states (4, in number). The initial (1 X 4.) 
vector 41) now gives the probability that a shut period starts in each of the shut states (in the 
steady state this would be given by •4;•s; see equation 50 of Chapter 20, this volume). Thus, 
the probability density is 

f(t) = 	 (138) 

with mean 

m = (13( — Q;5,-1  )119.- 
	 (139) 

This distribution can be expressed as a sum of exponential terms, the number of terms being 
equal to the number of shut states, and the rate constants being the eigenvalues of 
as described in Chapter 20 (this volume). 

We can now see, in matrix terms, why the distribution of all shut periods was so simple 
for the simple channel-block mechanism. The shut states are states 2 and 3 in this case, so 
consists of the lower right-hand 2 X 2 section of equation 126. The lack of intercommunication 
between the shut states in this mechanism is reflected by the fact that this submatrix is 
diagonal (elements not on the diagonal are zero); consequently, the eigenvalues of —(:),s, 
are simply its diagonal elements, k_ B  and fv. 

13.4. A General Approach to Bursts of Ion-Channel Openings 

The analysis of bursts of openings can be approached in a way that is valid for any 
mechanism of the sort discussed above. The analysis given by Colquhoun and Hawkes (1982) 
starts by dividing the k states of the system into three subsets defined as follows: (1) open 
states, denoted si (k,,i  in number), (2) short-lived shut states, denoted 91 (k in number), and 
(3) long-lived shut states, denoted T (ke. in number). The short-lived shut states (91) are 
defined such that any sojourn in this set of states is brief enough to be deemed a gap within 
a burst, whereas a sojourn in T would be deemed a gap between bursts. This is illustrated 
schematically in Fig. 20. The division into subsets is, of course, arbitrary; it is part of our 
hypothesis about how the observations should be interpreted. Furthermore, the division may 
depend on the conditions of the experiment (e.g., ligand concentrations) as well as on the 
mechanism itself. 

Take, as an example, the agonist mechanism in equation 110. The set of open states, 
,94, is made up of states 1 and 2. For most plausible values of the rate constants, the lifetimes 
of shut states 3 and 4 will be short, so they constitute set 913. At low agonist concentration 
(but not otherwise), the lifetimes of the vacant state, 5, will be long, so it is the sole member 
of set T. The transition rates for the mechanism, which are tabulated in matrix 127, can now 
be divided up according to this subdivision of states. For example, transition rates among 
open states are in the k, X k,i  matrix Qicd. that has already been defined in equation 134. 
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exponential terms, the number of terms being equal to the number of open states and the 
rate constants being the eigenvalues of -Q.sa.sa, as described in Chapter 20 (this volume). 

The distribution of shut times is exactly equivalent to that for open times given above, 
but we use the matrix Q~~ instead of Q.sa.sa and replace U.sa by a vector U~ containing k~ unit 
elements, where '?J' denotes the set of all shut states (k~ in number). The initial (1 X k~) 

vector <I> now gives the probability that a shut period starts in each of the shut states (in the 
steady state this would be given by <l>s; see equation 50 of Chapter 20, this volume). Thus, 
the probability density is 
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with mean 
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This distribution can be expressed as a sum of exponential terms, the number of terms being 
equal to the number of shut states, and the rate constants being the eigenvalues of - Q~~, 

as described in Chapter 20 (this volume). 
We can now see, in matrix terms, why the distribution of all shut periods was so simple 

for the simple channel-block mechanism. The shut states are states 2 and 3 in this case, so Q~~ 
consists ofthe lower right-hand 2 X 2 section of equation 126. The lack of intercommunication 
between the shut states in this mechanism is reflected by the fact that this submatrix is 
diagonal (elements not on the diagonal are zero); consequently, the eigenvalues of -Q~~ 
are simply its diagonal elements, Ls and W. 

13.4. A General Approach to Bursts of Ion-Channel Openings 

The analysis of bursts of openings can be approached in a way that is valid for any 
mechanism of the sort discussed above. The analysis given by Colquhoun and Hawkes (1982) 
starts by dividing the k states of the system into three subsets defined as follows: (1) open 
states, denoted.9'l (k.sa in number), (2) short-lived shut states, denoted ~ (k'1fl, in number), and 
(3) long-lived shut states, denoted ~ (k'f, in number). The short-lived shut states (~) are 
defined such that any sojourn in this set of states is brief enough to be deemed a gap within 
a burst, whereas a sojourn in ~ would be deemed a gap between bursts. This is illustrated 
schematically in Fig. 20. The division into subsets is, of course, arbitrary; it is part of our 
hypothesis about how the observations should be interpreted. Furthermore, the division may 
depend on the conditions of the experiment (e.g., ligand concentrations) as well as on the 
mechanism itself. 

Take, as an example, the agonist mechanism in equation 110. The set of open states, 
.9'l, is made up of states 1 and 2. For most plausible values of the rate constants, the lifetimes 
of shut states 3 and 4 will be short, so they constitute set ~. At low agonist concentration 
(but not otherwise), the lifetimes of the vacant state, 5, will be long, so it is the sole member 
of set~. The transition rates for the mechanism, which are tabulated in matrix 127, can now 
be divided up according to this subdivision of states. For example, transition rates among 
open states are in the k.sa X k.sa matrix Qtll.sa that has already been defined in equation 134. 
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Figure 20. A more general definition of bursts of channel openings. The diagram shows two bursts, the first 
with r = 3 openings and the second with r = 2 openings. The two bursts shut by different routes, though 
this would not be visible on the experimental record; the second burst ends via a direct .94 	transition, 
whereas the first gets to via VA. The lower part of the diagram shows the current that would be observed 
(if all the open states in set .s1 have the same conductance). At first, this diagram looks very like Fig. 7 
(except that direct 3 .= 1 transitions were not allowed in mechanism 59). In fact, it is much more general, 
because the three levels in the upper diagram no longer represent three discrete states in a particular specified 
mechanism; they now represent three sets of states (each of which may contain any number of discrete states) 
that can be defined for any mechanism that results in the occurrence of channel openings in bursts. At the 
top, the expression for the Laplace transform of the burst length distribution (equation 149) is reproduced, 
and arrows show the terms in the equation that correspond to the events depicted in the diagram. 

Similarly, the transition rates from .54 states to 91 states are in the Ica. X k matrix defined, 
from matrix 127, as 

Q.9191 = 
[ a02  0( 

0 
(140)  

We can define a probability density that describes the probability of staying within a 
particular subset, say .91 (the open states), throughout the time from 0 to t and then leaving 
ai for a shut state in 91, say. For any state i that is open (in s4) and any state j in 91), this 
density is defined as 

gi,(t) = lim [Prob(stay within A. from 0 to t and leave .54 for state j between 
At->0 

t and t + Ag in state i at time 0)/At[ (141)  
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Figure 20. A more general definition of bursts of channel openings. The diagram shows two bursts, the first 
with r = 3 openings and the second with r = 2 openings. The two bursts shut by different routes, though 
this would not be visible on the experimental record; the second burst ends via a direct .stl -7 '£ transition, 
whereas the first gets to '£ via q}/,. The lower part of the diagram shows the current that would be observed 
(if all the open states in set .stl have the same conductance). At first, this diagram looks very like Fig. 7 
(except that direct 3 ;::: I transitions were not allowed in mechanism 59). In fact, it is much more general, 
because the three levels in the upper diagram no longer represent three discrete states in a particular specified 
mechanism; they now represent three sets of states (each of which may contain any number of discrete states) 
that can be defined for any mechanism that results in the occurrence of channel openings in bursts. At the 
top, the expression for the Laplace transform of the burst length distribution (equation 149) is reproduced, 
and arrows show the terms in the equation that correspond to the events depicted in the diagram. 

Similarly, the transition rates from stl states to '!A states are in the k:f1 X k'!Jl, matrix defined, 
from matrix 127, as 

(140) 

We can define a probability density that describes the probability of staying within a 
particular subset, say stl (the open states), throughout the time from 0 to t and then leaving 
stl for a shut state in '!A, say. For any state i that is open (in stl) and any state j in '!A, this 
density is defined as 

gij(t) = lim [Prob(stay within stl from 0 to t and leave stl for state j between 
,l'-tO 

t and t + 6.tl in state i at time O)/6.t] (141) 
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The 	X lcua  matrix of such quantities we denote G.,4  (t). It can be calculated simply as 

Gsam(t) = eQ"'Q,Ija 	 (142) 

The 	X Ica  matrix P,,t,i(t) = eQ.914̀  analogous to equation 132, can be expressed as the 
sum of k,1  matrices multiplied by scalar exponential terms, as described in Chapter 20 
(this volume). 

13.4.1. The Number of Openings per Burst 

In Section 4.6, the distribution of the number of openings per burst was derived for a 
simple mechanism. For more complex mechanisms, quantities like the 712  used there are no 
longer convenient. We wish to know the probabilities for transitions from, for example, si 
states to 91 states regardless of when this transition occurs. The simple quantity 71-  12 is replaced 
by a matrix of transition probabilities, denoted simply 	(the argument, t, is omitted to 
indicate that this now contains simple probabilities that do not depend on time). Its elements 
give the probabilities that the system exits from s1 (after any number of transitions within 
sti states) to a particular state j in 91, given that it started in state i in si. It can be calculated as 

CO 

Gsda  = 
1 

GAga(t)dt = — (Q4,4)-1Q,Iga 	 (143) 

which can be found directly from the relevant subsections of Q defined above. Alternatively, 
we can take the Laplace transform of equation 142; the result for matrices is exactly analogous 
to that given for the simple exponential in equation 89: 

2[Gaa(t)] = GIa(s) = (sI 	 (144) 

The integration in equation 143 is equivalent to setting s = 0 in the Laplace transform, 
which gives the same result as in 143. Thus, we can also define GAR as GIR(0). Equivalent 
distributions involving transition from the 91 states to the .s4 states are given by 

GaA(t) = 	 (145) 

and 

Gga.91 = ( — Q-sa90-1Q-J 
	 (146) 

With the help of expressions such as this, we can, for example, write quite generally, 
for any mechanism, the probability that a burst contains r openings as 

P(r) = it,b(G,GA„i)r-I (I — GsdaGAA)u,1 	 (147) 

with mean 

m = 	— GAAGgas4)-1  us,/ 	 (148) 
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The kst X k'l/l, matrix of such quantities we denote Gst'l/l,(t}. It can be calculated simply as 

(142) 

The kst X kst matrix p.otst(t} = eQiiliilt analogous to equation 132, can be expressed as the 
sum of kst matrices multiplied by scalar exponential terms, as described in Chapter 20 
(this volume). 

13.4.1. The Number of Openings per Burst 

In Section 4.6, the distribution of the number of openings per burst was derived for a 
simple mechanism. For more complex mechanisms, quantities like the 7T12 used there are no 
longer convenient. We wish to know the probabilities for transitions from, for example, .<i1 
states to ~ states regardless of when this transition occurs. The simple quantity 7T12 is replaced 
by a matrix of transition probabilities, denoted simply Gst'l/l, (the argument, t, is omitted to 
indicate that this now contains simple probabilities that do not depend on time). Its elements 
give the probabilities that the system exits from .<i1 (after any number of transitions within 
.<i1 states) to a particular statej in ~, given that it started in state i in .<i1.1t can be calculated as 

(143) 

which can be found directly from the relevant subsections of Q defined above. Alternatively, 
we can take the Laplace transform of equation 142; the result for matrices is exactly analogous 
to that given for the simple exponential in equation 89: 

(144) 

The integration in equation 143 is equivalent to setting s = 0 in the Laplace transform, 
which gives the same result as in 143. Thus, we can also define Gst'l/l, as G~'l/I,(O}. Equivalent 
distributions involving transition from the ~ states to the .<i1 states are given by 

(145) 

and 

(146) 

With the help of expressions such as this, we can, for example, write quite generally, 
for any mechanism, the probability that a burst contains r openings as 

(147) 

with mean 

(148) 
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These are matrix analogues of the simple expressions given in equations 36 and 38, with 
the matrix GsuaGm.A. describing the transitions from open to brief-shut and back to open, 
rather than Tr 12IT 21. The only extra features that are needed (and only if there is more than 
one open state) are the initial vector Itlb, which is introduced to give the relative probabilities 
of a burst starting in each of the open states (see Section 6 of Chapter 20, this volume), and 
the usual vector of unit values, usi. 

As described in Chapter 20 (this volume), the distribution in equation 147 can be 
expressed, without use of matrices, as a mixture of geometric distributions (as in equation 
58 of Chapter 19) 

P(r) 	ai (1 — p )p1-1  

where the p, values are given by the eigenvalues of 	and a, is the area of the ith 
component. The number of proper (pi  0) geometric components is the rank of the matrix 
G,,,Gm„,,i, which is at most (almost always equal to) the direct connectivity between sd. and 
91 (see Section 10) and therefore does not exceed the smaller of IcA. and kga. If the number 
of proper components is less than 	there is also a component corresponding to zero 
eigenvalues, p = 0, which contributes to P(1) but not to any other P(r) (because 0' is zero 
for r > 1, but 0°  is taken as 1). This component is trivial in a mathematical sense, because 
it corresponds to the probability distribution of a random variable that can take only the 
value 1 but is of great practical interest because it corresponds to an excess of bursts that 
consist of a single opening. However, this component does not always exist even when 
G,,v1Ga,,,i  does have zero eigenvalues, because the area a, attached to it may be zero. This 
typically happens when the connectivity between the set of open states, A, and the complete 
set of shut states, 5-e, is the same as the direct connectivity between si and 91; this will be 
true, for example, if there is no direct connection between .91 and T, only indirect links via 

Examples and further discussion of this complex point are to be found in Colquhoun and 
Hawkes (1987). 

13.4.2. Distribution of the Burst Length 

A burst starts in an open state (one of the .91 states) and then may oscillate any number 
of times (0, 1, . 00) to the short-lived shut states (@ states) and back tol. The probability 
(densities) for all possible numbers of oscillations must be added (hence the summation sign 
in equation 149 below). Such oscillations are illustrated in Fig. 20 for bursts with three and 
two openings. The burst ends at the end of the last opening, before the long-lived shut states 
(set T) are reached. This may happen by direct transition from si to (as in the second 
burst in Fig. 20), or it may occur via an intermediate sojourn in 91 (as in the first burst in 
Fig. 20). In the latter case, the final sojourn in 91 is invisible to the observer, so its duration 
must not be counted as part of the burst length. It is at this point that we see the great power 
of working with Laplace transforms. The burst length, t, consists of the sum of the lengths 
of many individual sojourns in different states; these may be of any length, but they add up 
to t. The problem is, therefore, a more complicated version of the convolution problem 
described in Section 9. As in Section 9, it can be solved most conveniently by multiplying 
the Laplace transforms of the individual distributions. Hence, we obtain a term 
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GAga(s)GA,i(s) to describe an oscillation from .91 to 91 and back. On the basis of this argument, 
we find the Laplace transform, f*(s), of the burst length distribution as 

f*(s) = 4t, 	[Glg3(S)GLAS)jr-  [Glia(S)Gme  Gtc(S)ilke 	(149) 
r=1 

The final term in this describes the end of the burst. The last periods in sg. count as part of 
the burst duration (as illustrated in Fig. 20); hence, the terms GI NI(s) and GIT(s). The silent 
final sojourn in 91 (see first burst in Fig. 20) is dealt with very elegantly simply by setting 
s = 0, so the last term in equation 149 contains Ggr6, i.e., GU(0), rather than GU(s). This 
notation, introduced by Colquhoun and Hawkes (1982), removes the need for the clumsier 
deconvolution procedures used by Colquhoun and Hawkes (1981). 

The final part of the problem is to invert the Laplace transform in equation 149 to find 
the burst length distribution itself. This is a somewhat lengthy procedure (see Colquhoun 
and Hawkes, 1982), but the result is very simple. It is 

f(t) = (1)b[eQ`" 'Lai( Q,1,4)eb 	 (150) 

where the (k,/  X 1) vector et, = (G,43aGgIT  + G-,4%)mc  replaces the usual unit vector; it 
describes the paths by which the burst can end. The result in equation 150, although perfectly 
general, looks hardly any more complicated than the general open time distribution given 
in equation 136. The subscript s1.91 means that the calculation is done using only the upper 
lc,1  X 	section of e(1" (which is a 4 X kw  matrix). The form of this result is intuitively 
appealing: it describes a sojourn in the burst states (set W) that starts and ends in an open 
state (set A). It can be expressed in scalar form, as a mixture of 4 exponentials with rates 
that are the eigenvalues of —Qzw, as described in Chapter 20 (Section 7, this volume). 

13.4.3. Distribution of the Total Open Time per Burst 

In Section 6.4 we discussed the fact that, under certain circumstances, if there is only 
one open state, then the total time for which a channel is open within a burst has an exponential 
distribution. Having got as far as writing equation 149 for the Laplace transform of the burst 
length distribution, it is very easy to obtain various related distributions, such as that for the 
total open time per burst. The various possible routes through the burst are described by 
equation 149, but now we are not interested in the time spent in the shut states, so we merely 
set s = 0 in all the GA,i(s); i.e., we replace them with G.as4. Inversion of the result gives, 
again for any mechanism, a probability density with a form that is very similar to that for 
single open times in equation 136. It is given by 

f(t) = (1)bevslAt(-11  sts011,1 	 (151) 

where ckb  is as above. In this result, V, ,4  is a 	X Ic.91  matrix of transition rates between 
the set of s4 states that takes into account the possibility of going from one to another via 
a sojourn in 91 but not how long it takes to make the sojourn (because any time spent in a 
gap does not contribute to the total open time); thus, 

Vsa.,4 = Q 	 (152) 
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(152) 
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It follows that this distribution is also a sum of kw  exponentials whose rate constants are the 
eigenvalues of —VAA. In particular, it is a simple exponential distribution if there is only 
one open state. 

13.5. Some Conclusions from the General Treatment 

A number of general conclusions can be drawn for single-channel observations in the 
steady state from the analysis of Colquhoun and Hawkes (1982). For example, we can make 
the following statements: 

1. The analysis of single-channel observations depends on submatrices of Q that corre-
spond to observable sets of states. Insofar as these are smaller than Q itself, the 
analysis will be simpler than that of noise and relaxation experiments. 

2. The number of exponential components in the distributions of various open lifetimes 
and of the total open time per burst should be equal to the number of open states. 
In practice, of course, some components may be too small to observe. In mechanisms 
with more than one open state, the distribution of open times will not generally be 
the same for all of the openings in a burst (and similarly for gaps within a burst). 
The distributions of durations of other intervals of interest also have distributions 
that are sums of exponentials. The numbers of components in these distributions are 
summarized in Table II. 

3. In general, if a distribution contains more than one exponential component, the time 
constants for these components cannot be interpreted simply as the mean lifetimes 
of particular species, and the areas under the individual components cannot be 
interpreted as the number of sojourns in a particular state. Nevertheless, in particular 
cases, such interpretations may be approximately valid. 

4. The distribution of the number of openings per burst should consist of a mixture of 
a number of geometric distributions; the number of components is determined by 
the direct connectivity of the open states, s4, and the short-lived shut states, M. In some 
circumstances there may be an additional component that modifies the probability of 
a burst consisting of a single open time. 

5. It is, for all practical purposes, not possible to analyze mechanisms such as equation 
110 without the help of matrix notation. Use of this notation allows a single computer 
program to be written that can calculate numerically the single-channel, noise, and 
relaxation behavior of any specified mechanism (see Chapter 20, this volume). 

Table II. Numbers of Exponential Components in Various 
Distributions 

Type of interval 	 Number of components 

Open times 
Shut times 	 kg. = 	+ 
Burst length 	 ke  = k + ks1  
Total open time per burst 	 k,s  
Total shut time per burst 	 krA  
Gaps within bursts 
Gaps between bursts 	 ks, + 
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13.6. Distributions following a Jump 

Suppose there is a single jump of agonist concentration or voltage applied at time zero. 
Certain complications occur in the case where there is zero agonist concentration after the 
jump; there will be only a finite number of subsequent openings, and there may be none at 
all. We will not consider such cases here. 

The basic results already given for open- and shut-time distributions still hold after a 
jump; the only thing that is different is the initial vector (denoted I) above) that describes 
the relative probabilities of starting in each of the open states or shut states. If, for example, 
the channel is shut at the moment the jump occurs, t = 0, then the distribution of the 
subsequent shut time (the first latency, see Section 11) is described by exactly the same 
expression as has already been given, but now 4  must give the relative probabilities that the 
channel is in each of the shut states at t = 0. We denote the occupancies at time t as p(t) 
and partition this vector into the occupancies of open states p,l(t) (a 1 X Ics4  vector) and the 
occupancies of shut states p5,(t) (a 1 X ks.- vector), as described in Chapter 20 (this volume). 
The relative probability of being in each shut state at t = 0 is therefore 

0)(0) = p4(0)/p3.(0)t4 

where the denominator is merely the sum of the terms in the numerator, which is included 
to make the elements of 4(0) add up to I. Using 4(0) in equation 138 immediately gives 
the distribution of first latencies. In order to use this result, we must be able to postulate 
appropriate values for ps-.(0). An example is given in Chapter 20 (this volume, Section 8). 
If the channel has come to equilibrium before t = 0, the equilibrium occupancies (under 
prejump conditions), calculated as in Chapter 20 (this volume, Section 3) can be used. If 
the channel is not at equilibrium at t = 0, e.g., because there was another jump just before 
t = 0, then the occupancies at t = 0 can be calculated as described in Chapter 20 (this 
volume Section 4). 

More generally, when we allow for the possibility that the channel may be open at t = 
0, we can calculate the first latency as follows. If the channel is open at time zero, the first 
latency is defined to be zero. Let f; (t) denote the probability density that the first latency 
has duration t and that when it ends, the channel enters open state j; let f(t) be the row vector 
with elements f(t). Then 

f(t) = pA(0)8(t) + p.(0)eQ„`•;:bsi 	 (153) 

where S(t) is the Dirac delta function. The first term represents the 'lump' of probability at 
t = 0 that results from channels that were open at t = 0. The second term, which is of the 
form described above, gives the distributions of first latencies for channels that were shut 
at t = 0. The overall density of the first latency, f,(t) say, is obtained by summing over j, 
so it can be written as 

f i (t) = f(t)u,4 	 (154) 

with mean 

m = 
	

(155) 
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where the denominator is merely the sum of the terms in the numerator, which is included 
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the channel is not at equilibrium at t = 0, e.g., because there was another jump just before 
t = 0, then the occupancies at t = 0 can be calculated as described in Chapter 20 (this 
volume Section 4). 
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latency is defined to be zero. Let jj(t) denote the probability density that the first latency 
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(I53) 

where &(t) is the Dirac delta function. The first term represents the 'lump' of probability at 
t = 0 that results from channels that were open at t = O. The second term, which is of the 
form described above, gives the distributions of first latencies for channels that were shut 
at t = O. The overall density of the first latency, Is,(t) say, is obtained by summing over j, 
so it can be written as 

Ism = f(t)u.;4 (154) 

with mean 

(155) 
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After this first, rather special, shut time, all subsequent open and shut times have the 
standard distributions given by equations 136 to 139, provided we supply the appropriate 
initial probability vector, (I). The vector of entry probabilities, for the state in which the first 
open time begins, is 

ci)01 = I f(t)dt = P.,t(0) + Py.(0)( — Qg9,-)-1Q.5,1 = PA(0) + PFAO)G5,-.1 
	(156) 

The rth open time following the jump has a probability density given by the standard 
result, equation 136, but with initial vector, kr, given by 

= (12,01(G,45.G,A)r-1 	r 	2 	 (157) 

and the mean for the rth open time is 

	

m = 43'or( —  Qs1s4)
-; 

 Usi • 	 (158) 

Similarly, the rth shut time, for r 	2, has probability density given by equation 138 
with the initial vector, 4, defined as 

= (i)ol(G sigGY,si)r— 2G s49-; 
	r 	2 	 (159) 

The mean for the rth shut time is 

	

m = sr( —  Q97'.5) 111.5, 
	 (160) 

The results at the end of Section 11.2 can be obtained from these formulas. 
Equation 135 generalizes by use of the total probability theorem and the (strong) Markov 

property to 

Popen(t) = 	/if,(u)P(open at t I in open state j at time u)du 
13 

Popen(t) = 	f(u)[eQ(' ")]54.91u,Idu 
	

(161) 

where [eQ`],91,1  stands for that part of the matrix ecl' obtained by choosing only those rows 
and columns corresponding to open states. If there is only one open state, this is just the 
element Pi 1(0 discussed in Section 11.3. But when there is more than one open state, we 
see that equation 161 does not contain the first latency distribution [i.e., f(t)u,1  from 154] 
as such. We thus see that there is not a simple direct relationship between the macroscopic 
current and the first latency distribution; rather, both can be obtained from the vector f(t). 
The macroscopic time course, Popen(t),  can be calculated as described in Chapter 20 (this 
volume), it will have the form of a sum of k — 1 exponentials with rate constants that are 
the eigenvalues of —Q. 
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(161) 

where [eQ/l"q.sa stands for that part of the matrix eQ1 obtained by choosing only those rows 
and columns corresponding to open states. If there is only one open state, this is just the 
element Pll(t) discussed in Section 11.3. But when there is more than one open state, we 
see that equation 161 does not contain the first latency distribution [i.e., f(t)u.sa from 154] 
as such. We thus see that there is not a simple direct relationship between the macroscopic 
current and the first latency distribution; rather, both can be obtained from the vector f(t). 
The macroscopic time course, Popen(t), can be calculated as described in Chapter 20 (this 
volume), it will have the form of a sum of k - I exponentials with rate constants that are 
the eigenvalues of -Q. 
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The fact that equation 161 is in the form of a convolution implies that it can be expressed 
simply in terms of Laplace transforms as 

npen(s) = f*(s)[sI — Q1,4u,i 	 (162) 

where, by taking the Laplace transform of equation 153, 

r(s) = PA(0) + P0)(51  — 	 • 
	 (163) 

13.7. Time Interval Omission and Maximum-Likelihood Fitting 

The general nature of the problem that arises was discussed in Section 12. Here we 
give a brief outline of the matrix approach for general Markov mechanisms as developed in 
Hawkes et al. (1990) and Jalali and Hawkes (1992a,b), assuming a constant dead time k for 
both open and closed intervals. This follows the basic method of Ball and Sansom (1988b) 
of defining e-open times and e-shut times, which begin and end at time k after the start of 
the observed open and shut times (see Fig. 21), and we say that an event of type j occurs 
at such a point if the channel is in state j at that instant. An alternative approach (Ball et 
al., 1991, 1993b) that concentrates on the beginnings of the observed intervals is less 
mathematically elegant but more physically natural, more general, and likely to be a more 
fruitful approach to future problems; however, in this brief outline it is simpler to use the 
first approach. 

The key to the problem is a matrix function AR(t) whose Ejth element (i, j being open 
states) is 

observed open Interval 

e-open interval 
I 	I 

c 

Figure 21. Illustration of the definition of an observed or apparent open interval that begins with an open 
time greater than An e-open interval has the same duration but begins time after the start of the observed 
open interval and ends at time after the start of the following observed shut interval. The events of the 
semi-Markov process discussed in the text occur at these points. 
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s4Ri1(t) = P[X(t) = j and no shut time is detected over (0,t) I X(0) = 

where X(t) is the state of the channel at time t, and a detectable shut time is a sojourn in FJ,  
of duration greater than t. A similar function 5-'R(t) is defined for shut times. Hawkes et al. 
(1990) showed how to compute AR(t) by a method that is quite simple for small t but 
becomes more complicated and numerically unstable for large t. However, Jalali and Hawkes 
(1992a,b) showed that it could be extremely well approximated, for all except quite small 
values of t, by a sum of 	exponentials: 

ksa  

AR(t) = 	Mi e-K;r 
	

(164) 
i=i 

where the M, are 	X kA  matrices, and —X., are some kind of generalized eigenvalues. 
They recommend using this for t > 	and the exact result for t 

Now let eGA2,-.(t) denote a semi-Markov matrix whose Oh element (i in sti and j in 97') 
gives the probability density of an e-open interval being of length t and the probability that 
it ends in shut state j, given that it began in open state i. It is given by 

eGsvi(t) = AR(t — 	 (165) 

because, for the e-open interval to end at time t, there must be a transition from .s4 to at 
time t — k (with no detectable sojourn in up to then), followed by a sojourn of at least 
in Fie. eGAi.(t) replaces the matrix function G,.-(t) that occurs in the ideal 	= 0) theory. A 
similar function for shut times is 

= YR(t — 	exp(Q,1,4 ) 	 (166) 

These functions enable us to obtain many results of interest in a form that superficially 
resembles those found in the ideal case. 

13.7.1. Distributions of Observed Open Times and Shut Times 

The probability density of observed open times is 

f(t) = kieG,15.(t)uy 	 (167) 

which may be compared with the ideal form as given in equation 137. The probability density 
of observed shut times is given by the similar expression: 

f(t) = 	 (168) 

In these results 44),I. and 44:15.- are equilibrium probability vectors for the states occupied at the 
start of e-open intervals or e-shut intervals, respectively. Formulas for calculating them are 
given by Hawkes et al. (1990). 

The importance of result 164 is that, apart from very short times (t < 3t), the density, 
obtained by substituting equation 165 into expression 167, is very well approximated by a 
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mixture of 1(41  exponentials with rate constants X: ; in other words, it behaves much like the 
true distribution of open times, having the same number of components but with modified 
time constants (see Section 12.3 for a numerical example). Similar results apply to equation 
168, resulting in a distribution approximated by a mixture of kg. exponentials. 

13.7.2. Joint Distributions of Adjacent Observed Intervals 

The above results easily generalize: for example, the joint probability density of an 
observed shut time followed by an observed open time is given by 

f(ts,to) = ()?-r-eG.5.-,4(ts) eGAy..(to)uy. 	 (169) 

By further operations on this joint distribution, we can obtain various conditional distributions 
and conditional means, examples of which are given in Section 12.4. Details of these 
procedures are given in Srodzinski (1994). 

By interchanging .s4 and54",  in the above formula we get the joint distribution of an 
observed open time followed by an observed shut time. For a reversible process, these two 
distributions are identical when dealing with true open and shut times. However, the method 
used for defining observed intervals is not symmetrical in time; consequently, we have found 
in numerical examples that these two distributions are not actually identical, though they are 
so close that the difference would not be detected in practice. 

13.7.3. Likelihood of a Complete Record 

The formula 169 is easily extended to an entire record. If, for example, we have a 
sequence of 2n intervals that starts with a shut time and ends with an open time, and if the 
ith pair of adjacent observed shut and open times are denoted by ts„ to„ then the likelihood 
of the entire record is given by multiplying together all the appropriate matrices. Thus, the 
likelihood is given by 

eG..-p-dts 	eG.9.-.A.(42) eG.A.9.-(t02) • • • eGy,i(tsn) eG,4,9,-(ton)u9.- 	(170) 

In this expression, 4:13., is the initial vector for the first shut time; .4),.-eGs-.A(tsi ) then 
provides the initial vector for the first open time, and so on to the end of the record. The 
sequence of the openings and shuttings, and all the information on correlations contained in 
it, is taken into account. The likelihood defined in equation 170 can then be maximized 
numerically, as described in Section 12.5, to estimate the model parameters. 

14. Concluding Remarks 

In the first edition of this book many of the basic ideas described in this chapter were 
already known. The major advances since then have been in (1) the understanding of the 
importance of information from correlations (Section 10), (2) the development of the theory 
for nonstationary processes (Section 11), and (3) the development of usable theories for 
treating the problem of missed events (Section 12), with the concomitant ability to do direct 
maximum-likelihood fits of a mechanism to observed values simultaneously for several 
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different sets and types of data (Section 13). On the other hand, some important problems, 
such as the frequent problems in estimating the number of channels in a patch, remain 
intractable, and there has been little work on the kinetics of mechanisms that involve subcon-
ductance levels. 
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