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ABSTRACT Most, but not all, ion channels appear to obey the law of microscopic reversibility (or detailed balance). During the
fitting of reaction mechanisms it is therefore often required that cycles in the mechanism should obey microscopic reversibility at
all times. In complex reaction mechanisms, especially those that contain cubic arrangements of states, it may not be obvious
how to achieve this. Three general methods for imposing microscopic reversibility are described. The first method works by
setting the ‘obvious’ four-state cycles in the correct order. The second method, based on the idea of a spanning tree, works by
finding independent cycles (which will often have more than four states) such that the order in which they are set does not
matter. The third method uses linear algebra to solve for constrained rates.

INTRODUCTION

The principle of microscopic reversibility, or detailed

balance, was proposed by Tolman in 1924 (see Tolman,

1938) as an adjunct to the laws of thermodynamics. It was

discussed in detail by Onsager (1931) who noted that in

a cyclic reaction the requirements of the first and second laws

would be fulfilled if the dynamic state of equilibrium is such

that that there is an overall but uniform movement around the

cycle. ‘‘However,’’ says Onsager, ‘‘the chemists are

accustomed to impose a very interesting additional re-

striction, namely, when the equilibrium is reached each

individual reaction must balance itself. They require that the

transition A / B must take place just as frequently as the

reverse transition B / A, etc.’’ This procedure is known to

chemists as ‘detailed balance’. A more recent discussion is

given by Denbigh (1951), and see also Kelly (1979).

The principle states that when a system is at equilibrium,

the frequency of transitions is the same in both directions for

each individual reaction step (see Eq. A1.5). A consequence

of this is that for any cyclic reaction the product of the rate

constants going one way around the cycle is equal to the

product going the other way around. An example of

calculation of the frequency of transitions at the single

molecule level is given by Colquhoun and Hawkes (1995).

This principle is expected to be true only at genuine

equilibrium (a state of zero entropy production). A steady

state can be achieved that is not a genuine equilibrium (a

state of minimum, but not zero, entropy production), though

to maintain this steady state, some sort of external energy

supply is needed (for example, an ionic gradient that is itself

maintained by energy-requiring pumps).

Most of the theoretical results that have been obtained for

the distributions of things like open time duration, or burst

length for an ion channel (for example, those in Colquhoun

and Hawkes, 1982) assume (at most) only a steady state (i.e.,

that nothing varies with time so for example dp/dt¼ 0, where

p is the vector of state occupancies). They make no

assumption that there is a genuine equilibrium, so they are

valid for irreversible reactions and do not require any

assumption that microscopic reversibility holds.

In the examples given here, the smallest cycles have four

states. Occasionally mechanisms with three-state cycles are

postulated, though such cases usually seem to arise only

when two states are treated as one. Four-state cycles have

a natural physical origin. If it takes two reaction steps to get

from state 1 to state 3, it is usually expected that it will take

two steps (possibly not in the same order) to get back from

state 3 to state 1. Nevertheless, it is possible that, for

example, three conformations could exist such that a direct

transition from 3 to 1 could occur. In any case, the methods

given here will work for cycles of any size.

TESTS AND EXPERIMENTAL EVIDENCE

Single channel measurements can provide a much more

direct test of microscopic reversibility than any other

method. When microscopic reversibility holds, the channel

record will be symmetrical in time—you will not be able to

tell whether the tape is being played forward or backward. If

microscopic reversibility is not obeyed, asymmetry might

appear in the kinetics, or, more obviously, it may appear in

transitions between conductance levels. Rothberg and

Magleby (2001) have described three methods of looking

at kinetic reversibility. For example, conditional distribu-

tions of open times that are adjacent to specified shut time

(ranges) should be the same whether preceding or following

shut times are used if microscopic reversibility is obeyed.
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Another approach is to fit a mechanism with and without the

constraint to obey microscopic reversibility, and then use

a likelihood ratio test to judge whether the latter fit is better.

Methods such as these failed to show any deviation from

microscopic reversibility in large conductance Ca-activated

K1 channels (Song and Magleby, 1994). The same is true for

most other channels: no breach of microscopic reversibility

was found in the muscle type nicotinic receptor (Colquhoun

and Sakmann, 1985), or in three sorts of recombinant

N-methyl-D-aspartate (NMDA) receptor, NR1 subunit with

NR2A, NR2B, or NR2C (Stern et al., 1992), or similar native

NMDA channels (Gibb and Colquhoun, 1992). On the other

hand, time asymmetry in conductance transitions was

detected by Richard and Miller (1990) in a ‘double-barreled’

chloride channel, and for one sort of NMDA receptor, NR1-

NR2D (Wyllie et al., 1996). In the latter, transitions from the

35-pS level to the 17-pS level are more common than

transitions from 17 to 35 pS. A similar asymmetry was found

in a mutant NMDA channel (Schneggenburger and Ascher,

1997). Thus, although most channels appear to behave in

a manner consistent with microscopic reversibility, it is not

universal. That is hardly surprising because any interaction

between ion flow (which is not at equilibrium) and gating

could cause such an effect (Lauger, 1983; Finkelstein and

Peskin, 1984). That seems to be what is happening in both

chloride and NMDA channels.

SETTING MICROSCOPIC REVERSIBILITY

In a simple cyclic mechanism such as that shown in Fig. 1, it

is easy to ensure that the rate constants obey microscopic

reversibility. The fact that the product of the rates going

clockwise is the same as the product going anticlockwise,

k12k23k34k41 ¼ k21k14k43k32; (1)

allows one of the rate constants to be calculated from the

other seven. Thus, if it is chosen to set k12 by microscopic

reversibility then

k12 ¼
k21k14k43k32
k23k34k41

: (2)

When rate constants are being fitted to data, the seven rate

constants on the right-hand side are free parameters, to be

estimated, and at each iteration the corresponding value for

the eighth rate, k12 in this example, is calculated from Eq. 2.

This is what is done in fitting programs such as HJFCIT (see

Colquhoun et al., 2003). The ordering method and the

spanning tree method described in this article are now

implemented in HJCFIT and the theory programs available

from http://www.dcsite.org.uk.

If we are concerned only with equilibrium constants (say

K1 ¼ k12/k21, K2 ¼ k23/k32, K3 ¼ k43/k34, K4 ¼ k14/k41), then
Eq. 1 implies that one of the four equilibrium constants can

be calculated from the other three, thus

K1 ¼
K3K4

K2

: (3)

In more complicated reaction schemes it may not be

obvious how many rate constants are ‘free’ and how many

are fixed by microscopic reversibility, and still less obvious

how these rates should be calculated. In particular, several

proposed mechanisms for the NMDA receptor, and a few

that have been considered for ACh and glycine receptors,

contain cubic structures, and these schemes necessitated

a more systematic approach. Cubic mechanisms are

commonly postulated also for receptors that are coupled to

G-proteins (Weiss et al., 1996; see also Colquhoun, 1998).

There are three different methods that allow microscopic

reversibility to be set in mechanisms of any complexity. The

first method is to use the ‘obvious’ four-membered cycles as

above; in this case the resulting equations are not mutually

independent and the order in which cycles are set is crucial.

The second method is to discover cycles that are mutually

independent, so the order in which they are set does not

matter (not all of them will be four-membered cycles in this

case). Both methods will be described. The former method is

easier to understand at an intuitive level, and easier to apply

‘manually’ in simple cases, but the latter is more general and

also easier to program. The third method, which is described

in Appendix 2, is based on solving the equations for the

constraints and may be useful in cases of complicated

mechanisms when many physical constraints are imposed, as

well as microscopic reversibility.

FIGURE 1 A four-state cyclic reaction mechanism. The names of the

states in this example are intended to indicate that R is a receptor with two

different binding sites; either (states 2 and 4) may become occupied before

both are occupied (state 1). The labels on the arrows indicate the transition

rates and the corresponding equilibrium constants are shown as K1¼ k12/k21,

K2 ¼ k23/k32, K3 ¼ k43/k34, K4 ¼ k14/k41.

Imposing Microscopic Reversibility 3511

Biophysical Journal 86(6) 3510–3518



SETTING MICROSCOPIC REVERSIBILITY BY
ORDERING CYCLES

Consider the reaction scheme shown in Fig. 2. It represents

a two-dimensional reaction scheme with 16 states (one at

each vertex) and contains nine four-membered cycles

(numbered 1–9 in the diagram). It is obvious that if cycles

2, 3, 4, and 5 were set first, then every connection in cycle 1

would have already been set and it would be impossible to

change any of them. However, if cycle 1 is set first, then 2, 3,

4, and 5, and lastly the ‘corner’ cycles, 6, 7, 8, and 9, then no

problems arise. The procedure is to set the cycles in order of

decreasing number of shared edges. The central cycle (1) has

four shared edges and so is set first. Cycles 2, 3, 4, and 5 have

three shared edges and are set next (in any order), and the

‘corner’ cycles, 6, 7, 8, and 9, have two shared edges and are

set last. This method allows microscopic reversibility to be

set in all nine cycles, so nine rates are so set. There are 16

states, 24 connections (equilibrium constants), and therefore

48 rate constants, of which 48 � 9 ¼ 39 rates are free

parameters. Note that 24 � 16 1 1 ¼ 9 (it is shown below,

Eq. 9, that this calculation is quite generally valid).

The scheme in Fig. 2 contains many cycles with more than

four members. The perimeter, for example, forms a cycle

containing 12 states. It is easy to show that if the nine

smallest cycles obey microscopic reversibility then any

larger outer cycle that encloses them also does so. The larger

cycles would usually be considered redundant. In more

complicated cases it may not be obvious which cycles are

‘redundant’, but the spanning tree method (below) provides

a simple solution to that problem.

Consider next a reaction mechanism with eight states

(vertices) in a cubic arrangement, as shown in Fig. 3. This

has six four-state cycles (six faces), 12 connections (edges),

and 24 rate constants. If we again restrict ourselves to four-

state cycles, we again find that the order in which they are set

matters.

Suppose we set microscopic reversibility (as in Eq. 2) for

the top, bottom, front, and back faces (cycles). This leaves

the left and right faces to be set. But every rate constant in

both of these faces is part of a cycle that has already been set,

and which therefore cannot be changed, so only four faces

can be set. If, however, we start by setting top, bottom, back,

and left faces, we are left with the front and right faces, and

the front face can be set because it has a link (2–3) that is not

part of a cycle that has already been set. We still can’t set the

sixth face, but we don’t need to do so because it is easily

proved that if five faces obey microscopic reversibility, the

sixth must also do so. Order matters: the last two faces must

be adjacent, not opposite.

This sort of argument can be extended to more complex

schemes. For example in a 3 3 3 3 3 stack of cubes (27

cubes, 64 states, 108 four-membered cycles, 144 connec-

tions, 288 rate constants) it is obvious that the central cube

(which shares all of its faces with outer cubes) must be set

first.

The need for setting cycles in a particular order arises from

the fact that the equations for calculating rates from them are

not independent. For example, the top face in Fig. 3 is a four-

state cycle containing states 1–2–7–6. If, say, we choose to

set k12 from this cycle we have

k12 ¼ k21
k16k67k72
k27k76k61

: (4)

If we then calculate, say k23 from the front face (the four-

state cycle 1–2–3–4) we use

k23 ¼ k32
k21k14k43
k34k41k12

: (5)

FIGURE 2 Representation of a two-dimensional reaction scheme with 16

states (one at each vertex). It contains nine four-membered cycles (numbered

1–9 in the diagram).

FIGURE 3 A reaction mechanism with eight states (vertices) in a cubic

arrangement.
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Notice that k12 is on the left-hand side of Eq. 4, but also

occurs on the right-hand side of Eq. 5. This causes no

problems as long as k12 is evaluated before it is needed, but it
is in this sense that the equations are not independent, and

that is why the order in which the cycles are set matters.

In summary, the following rules of ordering work for the

setting of four-membered cycles in all cases we have

encountered.

1. If the mechanism contains cycles that are not part of

a cube, then these are set first, after ordering the cycles in

decreasing order of the number of shared connections

(edges) they have. Those with the most shared edges are

set first.

2. If the mechanism contains cubes then locate them and

rank them in order of increasing number of external

faces.

3. Set microscopic reversibility in each cube (as above),

starting with the cube with fewest external faces.

4. For each cube, before setting microscopic reversibility,

order the six faces so: a), internal faces are set before

external, and b), if necessary, reorder the last two of the

six faces so that the last two faces are adjacent to one

another, not opposite. For example, if the last two faces

were (5) top and (6) bottom, then setting the top face

earlier will prevent the last two faces from being

opposite.

The ordering method has been illustrated only for four-

state cycles. Clearly it would work equally well for three-

state cycles, though for schemes that contained cycles of

mixed sizes some modification might be needed. For

example, a three-state cycle with three shared edges would

be set before a five-state cycle with four shared edges, to

make sure each cycle has at least one edge that hasn’t already

been set by something else.

SETTING MICROSCOPIC REVERSIBILITY BY
THE SPANNING TREE METHOD

The necessity for setting cycles in a particular order arises

from the fact that, when cycles always have four members,

the equations for microscopic reversibility are not in-

dependent of each other (see Eqs. 4 and 5). In a quite

different context, a method for choosing linearly indepen-

dent cycles is well known. The answer lies in graph theory

(see, for example, Gibbon, 1985), a topic that is also relevant

to the existence of correlations in reaction mechanisms

(Colquhoun and Hawkes, 1987).

The reaction mechanism is described as a graph, each state

being a vertex and each connection between states (the pair

of rate constants) being an edge. The mechanism is called

a connected graph, because any state is accessible from any

other, directly or indirectly. The essential idea for our

purpose is the spanning tree. A tree is a connected graph that

contains no cycles, and it is called a spanning tree if it

connects all the states (vertices). The idea can be illustrated

simply by the reaction schemes in Figs. 2 and 3.

Fig. 4 shows, as heavy lines, two examples of the many

possible spanning trees for the 16-state mechanism in Fig. 2.

It is well known that the number of connections (edges) in

a spanning tree must always be one fewer than the number of

states in the mechanism: a proof can be found in Gibbon

(1985). Denoting the number of connections in the spanning

tree as ctree and the number of states as s,

ctree ¼ s� 1: (6)

Thus, all trees in this case have 15 connections, leaving

24 � 15 ¼ 9 connections not in the tree. These nine

FIGURE 4 The 16-state mechanism in Fig. 2, with two examples of the

many possible spanning trees shown, as thick lines.
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connections are the ones that can be set by microscopic

reversibility, and the cycle that is used to set them can be

found by locating the (unique) path along the spanning tree

that joins the two states in question. For example in Fig. 4 A,
the connection between state 2 and 6 would be set by mi-

croscopic reversibility, and the route between them along

the tree is 2–1–5–6, so if k26 were to be set it would be

calculated as

k26 ¼ k62
k21k15k56
k65k51k12

: (7)

In this case the cycle is four membered, as in Eq. 1. But to

set microscopic reversibility for the connection 4–8, the

route along the tree from state 4 to state 8 involves eight

states (4–3–2–1–5–6–7–8), so to set, say, k48 we would use

k48 ¼ k84
k43k32k21k15k56k67k78
k87k76k65k51k12k23k34

: (8)

In this example there are three cycles with four states,

three cycles with six states, and three cycles with eight states.

Fig. 4 B shows another possible spanning tree. This one

gives rise to five four-state cycles, two six-state cycles, one

eight-state cycle, and one 10-state cycle. The 10-state cycle

arises when microscopic reversibility is set for the 2–3 route:

the route from state 2 to state 3 is seen to be 2–1–5–9–13–

14–15–11–7–3.

If all nine expressions of the sort above are written out, it is

seen that none of the nine rate constants that are being

calculated (on the left-hand sides) appears on the right-hand

sides of the equations. In this sense the equations are

independent, and the order in which they are set is irrelevant.

The proof that this method can be applied to find

independent cycles in any reaction mechanism can be found

in Gibbon (1985), who gives:

Theorem 2.7 ‘‘A set of fundamental circuits, with respect

to some spanning tree of a graph G, forms a basis for

the circuit space of G.’’
Corollary 2.1 ‘‘The circuit space for a graph with e edges

and v vertices has dimension (e � v 1 1).’’

Translated into our language, these mean that, quite

generally: 1), the cycles found from the spanning tree are

independent, so the order in which they are calculated does

not matter, and 2), the number of connections that are set by

microscopic reversibility, cmr, for any mechanism is

cmr ¼ ctot � ctree ¼ ctot � s1 1; (9)

where ctot is the total number of connections in the reaction

mechanism.

This shows that microscopic reversibility can be set,

regardless of order, in the independent cycles identified by

the spanning tree. But can we be sure that doing this will

ensure that all of the other cycles that can be found (often

very numerous) will also obey microscopic reversibility? A

formal demonstration that this is true is given in Appendix 1,

which extends theorem 2.7 in Gibbon (1985) to show that if

microscopic reversibility is obeyed in the fundamental cycles

then it will also be obeyed for any cycle found by combining

them. A stochastic argument that leads to the same

conclusion is also given in Appendix 1.

In the examples in Fig. 4, the number of connections that

are set by microscopic reversibility is thus 24 � 161 1 ¼ 9,

as already found by the ordering argument.

The cubic mechanism (Fig. 3) has s¼ 8 states, so from Eq.

6 all spanning trees must have ctree ¼ 7 connections, and

from Eq. 9 the number of connections set by microscopic

reversibility is 12 � 8 1 1 ¼ 5, as found by a different

argument in the first section. Fig. 5 shows the cubic

mechanism in Fig. 3, projected in two dimensions, and the

thick lines show one of the many possible spanning trees. For

this particular case, the five connections to be set by

microscopic reversibility are 5–6, 7–8, 2–7, 7–8, and 3–8.

The cycles for setting these are all four-state cycles apart

from 7–8, for which the cycle is six-state, 7–6–1–4–5–8.

PRACTICAL IMPLEMENTATION AND THE
INCORPORATION OF PHYSICAL CONSTRAINTS

In practice one often wishes to constrain the values of some

of the rate constants, for physical reasons. For example,

some rate constants may be set to be equal to ensure that

binding of a ligand to one binding site is independent of

binding to another site. It may also be required to set

a particular rate constant to produce a specified EC50

(examples are given by Colquhoun et al., 2003; Hatton et al.,

2003). A rate constant cannot be set by such a physical

constraint if it is set by microscopic reversibility, so we may

wish to construct a particular spanning tree, one that contains

FIGURE 5 The cubic mechanism in Fig. 3 is shown projected in two

dimensions, with thick lines indicating one of the many possible spanning

trees.
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specified connections, namely all those connections that one

wishes to constrain.

There is a beautifully simple way of doing this that is easy

to implement in a computer program. In our problem the

connections between states are logical rather than physical,

but in many applications the connections (edges) have

a number such as a length or a cost attached to them. For

example, a common application is to design a road or railway

network to connect several towns. In such cases the spanning

tree with minimum length, or minimum cost, is required.

This is known as a ‘minimum spanning tree’. Very efficient

algorithms exist for finding minimum spanning trees

(Gibbon, 1985); Prim’s algorithm (Prim, 1957) is a well-

known one. To force particular connections to be part of the

spanning tree, so that we may constrain them later, we assign

to them an imaginary length that is shorter than the length for

the connections that are to be set by microscopic rever-

sibility, and then use Prim’s algorithm. If a tree exists that

contains all the required routes, this method will find it.

Similarly it is possible to specify which connections you

would like to set by microscopic reversibility by assigning

them a longer imaginary length so that a spanning tree will

be found that excludes the specified connections if that is

possible. For example, the following values will guarantee

a spanning tree with the right properties if such a tree exists:

‘length’ ¼ 1 for routes that are to be included in the tree,

‘length’ ¼ 2 for other routes apart from ‘length’ ¼ s (the

number of states) for routes that one wishes to set by

microscopic reversibility.

As an example of constraints, consider the simple case of

binding to two different binding sites, which can be

represented as shown in Fig. 1. In the case where the sites

are independent, so binding to one is unaffected by whether

or not the other is occupied, we wish to apply the constraints

k14 ¼ k23 (10)

k41 ¼ k32 (11)

k12 ¼ k43 (12)

k21 ¼ k34: (13)

In Colquhoun et al. (2003), k14, k41, and k12 were found

from the constraints (Eqs. 10–12), and k21 was then set by

microscopic reversibility (a procedure that ensures the fourth

constraint, Eq. 13, is also obeyed). In more complex

mechanisms it may not be at all obvious which rates to

constrain and which to set by microscopic reversibility. In

cases like this, in which the constraints alone are sufficient to

ensure microscopic reversibility, it is much simpler to set all

the constraints required by the physical problem (four in this

example), and to ignore spanning trees altogether. In difficult

cases it may be necessary to use the general method

described in Appendix 2.

APPENDIX 1: PROOF THAT SETTING THE
FUNDAMENTAL CYCLES ENSURES THAT ALL
CYCLES OBEY MICROSCOPIC REVERSIBILITY

Kathryn. A. Dowsland and Frank G. Ball*

*School of Mathematical Sciences, University of Nottingham, Notting-

ham NG7 2RD, United Kingdom

We need to prove that once microscopic reversibility has been set in the

fundamental cycles that are identified by the spanning tree, then all other

possible cycles will also obey microscopic reversibility, and so need not be

considered. We shall give two proofs, because each casts light on the

problem from a different point of view. The first proof is based purely on

graph theory, and the second takes a more stochastic approach.

Proof that combination of fundamental cycles
preserves microscopic reversibility

Theorem 2.7 in Gibbon (1985) tells us that we can obtain any circuit as the

‘sum’ of fundamental circuits, where ‘sum’ is defined as addition of the

edges modulo 2 and is usually denoted by the operator4. Thus, if C1 andC2

are circuits C1 4 C2 is a circuit or edge disjoint union of circuits formed by

those edges in C1 or C2, but not both. To use this result to set microscopic

reversibility via the spanning tree method we also need to show that 4
preserves the microscopic reversibility property, i.e., we need to show that if

C1 and C2 satisfy the necessary conditions then so does C1 4 C2.

To prove this we will make use of the following definitions and notation.

Suppose we a have a circuit Ci. We define a ‘consistent orientation’ of Ci to

be an allocation of a direction to each of the edges of Ci such that we can

traverse the complete circuit following the edges in a forward direction. Any

circuit will have two consistent orientations, one of which will be the reverse

of the other. (We can obviously extend the definition to the case where Ci is

an edge disjoint union of circuits.)

For a given consistent orientation let d1
i ðeÞ be the rate constant

associated with edge e in the forward direction for that orientation, and

d�i ðeÞ be the rate constant for edge e in the opposite direction.

Consider C3 ¼ C1 4 C2. We will start by showing that if we orient the

edges in C3 according to a consistent orientation, then for consistent

orientations of C1 and C2 the remaining edges must have opposite

orientations in the two circuits. We then show that this implies that if C1

and C2 satisfy microscopic reversibility so does C3.

The edges in C1 and C2 can be partitioned into three classes, E1 ¼ those

edges in C1 but not C2, E2 ¼ those edges in C2 but not C1, and EB ¼ those

edges in both. LetG be the graph given by E1 [ E2 [ EB. This will consist of

C3 ¼ E1 [ E2 (by definition) and the set of edges in EB. As C1 and C2 are

circuits EB must be a path or disjoint union of paths each starting and ending

at a vertex of C3. Consider any such path joining vi and vj. vi will be a vertex

of degree 3 in G and will represent a point in C3 where C1 and C2 meet.

Now assume that we direct the edges in E1 and E2 so that we have

a consistent orientation of C3. Either the edge from C1 or the edge from C2

will be oriented into vi and the other will be oriented away from vi. Assume

without loss of generality that it is the edge from C1 that is oriented toward

vi. Then in a consistent orientation of C1 the edges of the path in EB must be

oriented from vi to vj. Similarly as the edge from C2 is oriented away from vi,

in a consistent orientation of C2 the edges in the path must be oriented from

vj to vi. Thus the edges in the path will be oriented in opposite directions in

C1 and C2, and this will be true of all such paths.

Thus if we orient the edges in E1 and E2 so that they form a consistent

orientation in C3 the edges in EB will be oriented in opposite directions in the

corresponding consistent orientations of C1 and C2 and the following

equalities apply.

d
1

1 ðeÞ ¼ d
1

3 ðeÞ and d
�
1 ðeÞ ¼ d

�
3 ðeÞ"e 2 E1 (A1:1)

d
1

2 ðeÞ ¼ d
1

3 ðeÞ and d
�
2 ðeÞ ¼ d

�
3 ðeÞ"e 2 E2 (A1:2)
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d
1

1 ðeÞ ¼ d
�
2 ðeÞ and d

�
1 ðeÞ ¼ d

1

2 ðeÞ"e 2 EB: (A1:3)

Now assume C1 and C2 satisfy the conditions for microscopic reversibility.

We have:

Substituting from Eqs. A1.1, A1.2, and A1.3 gives:

Equation A1.4 shows that the microscopic reversibility condition is indeed

satisfied by C3, as required.

By repeatedly applying the above result we have the required property

that any sum of a set of circuits satisfying microscopic reversibility will also

satisfy the condition.

A stochastic proof that setting the fundamental
cycles ensures microscopic reversibility

Kelly (1979) states, in his theorem 1.3: ‘‘A stationary Markov process is

reversible if and only if there exists a collection of positive numbers pj, j 2 S,

summing to unity that satisfy the detailed balance conditions

pjqjk ¼ pkqkj; j; k 2 S: (A1:5)

When there exists such a collection pj, j 2 S, it is the equilibrium distribution

of the process.’’ Here, S denotes the set of all states. In our language, pj
represents the fractional occupancy of state j, and qjk is the transition rate

from state j to state k (an element of theQmatrix), so Eq. A1.5 states that, for

a reversible process at equilibrium, the frequency of transitions is the same in

each direction for every individual reaction step. This implies that the

products of rates going each way around a cycle must be equal, as

exemplified in Eq. 1 (e.g., Kelly, 1979; theorem 1.8).

To prove that setting the fundamental cycles ensures microscopic

reversibility, we find a collection pj, j 2 S, such that Eq. A1.5 is satisfied.

First note that there exists a unique collection pj, j 2 S, such that Eq. A1.5 is

satisfied for the links in the tree. Indeed, these pj are the equilibrium

occupancies for the process that has only the links in the tree, which is

reversible by Kelly (1979), Lemma 1.5. The setting equations (exemplified

in Eqs. 2, 7, and 8), with these pj, show that Eq. A1.5 also holds for any link

that is not in the spanning tree, so the process is reversible and the pj
represent the equilibrium occupancies for our reaction scheme.

We can illustrate the above proof by considering the spanning tree in Fig.

4 B. The pj can be constructed explicitly as follows. Applying Eq. A1.5 to

the link 1–5 yields

p5 ¼
k15
k51

p1: (A1:6)

Now applying it to the link 5–6 yields

p6 ¼
k56
k65

p5 ¼
k56k15
k65k51

p1: (A1:7)

Continuing in this fashion yields each of p2, p3, . . . , p16 as a multiple of p1,
which can then be determined since the pj sum to one. Now consider a link

that is in the mechanism but not in the spanning tree, for example 2–6. The

rate k26 is set using Eq. 7. Applying Eq. A1.5 to the links 1–2, 1–5, and 5–6,
which are in the spanning tree, implies that

k21
k12

¼ p1

p2

;
k15
k51

¼ p5

p1

; and
k56
k65

¼ p6

p5

: (A1:8)

Substituting these into Eq. 7 yields p2 k26¼ p6 k62, so Eq. A1.5 holds also for
the link 2–6. A similar argument shows that Eq. A1.5 holds for all the other

links that are not in the spanning tree. Note that the above proof indicates

that for a reversible process, the equilibrium occupancies depend only on the

equilibrium constants.

APPENDIX 2: CONSTRAINTS AS A LINEAR
SYSTEM OF EQUATIONS

The question of how to apply physical constraints, in addition to

microscopic reversibility, was discussed in the last section of the article.

The example used there can be used to illustrate a general way to deal with

this sort of problem.

In the example, it was found that the four physical constraints, Eqs. 10–

13, implied that microscopic reversibility, Eq. 1, is satisfied. This means that

these five equations are not independent. This can be shown as a general

property of linear systems of equations. To do this we shall use the

logarithms of the rate constants, denoted x¼ log(k). In the example there are

eight rate constants, the unknowns that are to be estimated. The eight log(k)

values can be arranged in an 83 1 column vector, x. The order does not

matter, but we can choose to start from k12 and proceed clockwise up to k41
and then anticlockwise from k21 up to k32.

Thus we define

x1 ¼ logðk12Þ; x2 ¼ logðk23Þ; . . . ;
x5 ¼ logðk21Þ; . . . ; x8 ¼ logðk32Þ: (A2:1)
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In this notation the constraints in Eqs. 10–13 are

x6 � x2 ¼ 0

x4 � x8 ¼ 0

x1 � x7 ¼ 0

x5 � x3 ¼ 0: (A2:2)

In addition the constraint of microscopic reversibility can be written as a fifth

equation,

x1 1 x2 1 x3 1 x4 � x5 � x6 � x7 � x8 ¼ 0: (A2:3)

These constitute a homogeneous system of five linear equations with eight

unknowns, which can be written as

+
8

j¼1

aijxj ¼ 0 i ¼ 1; . . . ; 5: (A2:4)

This can be written generally in matrix form as

Ax ¼ 0; (A2:5)

where the coefficients, aij, are elements of the 5 3 8 matrix, A, namely

A ¼

0 �1 0 0 0 1 0 0

0 0 0 1 0 0 0 �1

1 0 0 0 0 0 �1 0

0 0 �1 0 1 0 0 0

1 1 1 1 �1 �1 �1 �1

2
66664

3
77775: (A2:6)

This matrix has rank 4, rather than the maximum possible rank of 5 for

a 5 3 8 matrix. This is exactly what was expected, because the five

equations above are not linearly independent. This means, in our context,

that four variables are determined by the constraints, leaving the other four

as free parameters the values of which must be given (e.g., they might be the

values of the free rate constants to be tried by a fitting program).

In the case of the cubic mechanism shown in Fig. 3, there are six 4-state

cycles, and 24 rate constants. The six microscopic reversibility constraints

can be written as six equations analogous with Eq. A2.3. When this is done

the matrix, A, of coefficients is 6 3 24 and is found to have rank 5. Thus, as

found above, five rate constants are determined by the microscopic

reversibility constraints leaving 19 free rate constants. Any further

constraints each add an extra row to A, the rank of which will indicate the

number of free parameters.

In general we will have a system with n unknowns (the total number of

rate constants in the model) and m constraints (the sum of the microscopic

reversibility constraints and the constraints to be imposed on some of the rate

constants). The number of independent constraints will be equal to the rank r

of the m 3 nmatrix, A, (r# m). The number of free parameters is therefore

n � r. In a very complicated model with many cycles and physical

constraints to be imposed, the rank of the matrix of the associated linear

system may be the simplest way of determining the number of free

parameters.

We wish to find a general way to compute the r constrained rates from

n � r free rates. The theory of homogeneous linear systems (e.g., Schneider

and Barker, 1973) gives a solution as follows. Define B as any r 3 r

submatrix of A that has a nonzero determinant, and is therefore invertible. In

general there will be several such ‘nonnull minors’, and which one of them is

chosen will dictate which rates are calculated via constraints, just as choice

of one or another of the possible spanning trees does. After interchanging

rows and columns of A if necessary, we can then write A in the partitioned

form

A ¼ B C
D E

� �
; (A2:7)

where C is r 3 (n � r). The vector x is partitioned accordingly into

x ¼ xc

xf

� �
; (A2:8)

where xc contains the r constrained log(rate) values, and xf contains n � r

free values.

From Eq. 2.5, Ax ¼ 0, is equivalent to

Bxc 1Cxf ¼ 0; (A2:9)

and the solution of this is

xc ¼ �B�1Cxf : (A2:10)

This provides a general way of calculating the constrained values from the

free ones.

We have benefited enormously from discussions with Assad Jalali and Alan

Hawkes (European Business Management School, Swansea), Francis

Johnson (Mathematics, University College London), Frank Kelly (Statis-

tical Laboratory, Cambridge University), and Lucia Sivilotti and Chris

Shelley (Pharmacology, University College London).
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