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ABSTRACT Most, but not all, ion channels appear to obey the law of microscopic reversibility (or detailed balance). During the
fitting of reaction mechanisms it is therefore often required that cycles in the mechanism should obey microscopic reversibility at
all times. In complex reaction mechanisms, especially those that contain cubic arrangements of states, it may not be obvious
how to achieve this. Three general methods for imposing microscopic reversibility are described. The first method works by
setting the ‘obvious’ four-state cycles in the correct order. The second method, based on the idea of a spanning tree, works by
finding independent cycles (which will often have more than four states) such that the order in which they are set does not

matter. The third method uses linear algebra to solve for constrained rates.

INTRODUCTION

The principle of microscopic reversibility, or detailed
balance, was proposed by Tolman in 1924 (see Tolman,
1938) as an adjunct to the laws of thermodynamics. It was
discussed in detail by Onsager (1931) who noted that in
a cyclic reaction the requirements of the first and second laws
would be fulfilled if the dynamic state of equilibrium is such
that that there is an overall but uniform movement around the
cycle. ‘““However,”” says Onsager, ‘‘the chemists are
accustomed to impose a very interesting additional re-
striction, namely, when the equilibrium is reached each
individual reaction must balance itself. They require that the
transition A — B must take place just as frequently as the
reverse transition B — A, etc.”” This procedure is known to
chemists as ‘detailed balance’. A more recent discussion is
given by Denbigh (1951), and see also Kelly (1979).

The principle states that when a system is at equilibrium,
the frequency of transitions is the same in both directions for
each individual reaction step (see Eq. A1.5). A consequence
of this is that for any cyclic reaction the product of the rate
constants going one way around the cycle is equal to the
product going the other way around. An example of
calculation of the frequency of transitions at the single
molecule level is given by Colquhoun and Hawkes (1995).

This principle is expected to be true only at genuine
equilibrium (a state of zero entropy production). A steady
state can be achieved that is not a genuine equilibrium (a
state of minimum, but not zero, entropy production), though
to maintain this steady state, some sort of external energy
supply is needed (for example, an ionic gradient that is itself
maintained by energy-requiring pumps).
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Most of the theoretical results that have been obtained for
the distributions of things like open time duration, or burst
length for an ion channel (for example, those in Colquhoun
and Hawkes, 1982) assume (at most) only a steady state (i.e.,
that nothing varies with time so for example dp/dt = 0, where
p is the vector of state occupancies). They make no
assumption that there is a genuine equilibrium, so they are
valid for irreversible reactions and do not require any
assumption that microscopic reversibility holds.

In the examples given here, the smallest cycles have four
states. Occasionally mechanisms with three-state cycles are
postulated, though such cases usually seem to arise only
when two states are treated as one. Four-state cycles have
a natural physical origin. If it takes two reaction steps to get
from state 1 to state 3, it is usually expected that it will take
two steps (possibly not in the same order) to get back from
state 3 to state 1. Nevertheless, it is possible that, for
example, three conformations could exist such that a direct
transition from 3 to 1 could occur. In any case, the methods
given here will work for cycles of any size.

TESTS AND EXPERIMENTAL EVIDENCE

Single channel measurements can provide a much more
direct test of microscopic reversibility than any other
method. When microscopic reversibility holds, the channel
record will be symmetrical in time—you will not be able to
tell whether the tape is being played forward or backward. If
microscopic reversibility is not obeyed, asymmetry might
appear in the kinetics, or, more obviously, it may appear in
transitions between conductance levels. Rothberg and
Magleby (2001) have described three methods of looking
at kinetic reversibility. For example, conditional distribu-
tions of open times that are adjacent to specified shut time
(ranges) should be the same whether preceding or following
shut times are used if microscopic reversibility is obeyed.
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Imposing Microscopic Reversibility

Another approach is to fit a mechanism with and without the
constraint to obey microscopic reversibility, and then use
a likelihood ratio test to judge whether the latter fit is better.
Methods such as these failed to show any deviation from
microscopic reversibility in large conductance Ca-activated
K™ channels (Song and Magleby, 1994). The same is true for
most other channels: no breach of microscopic reversibility
was found in the muscle type nicotinic receptor (Colquhoun
and Sakmann, 1985), or in three sorts of recombinant
N-methyl-p-aspartate (NMDA) receptor, NR1 subunit with
NR2A, NR2B, or NR2C (Stern et al., 1992), or similar native
NMDA channels (Gibb and Colquhoun, 1992). On the other
hand, time asymmetry in conductance transitions was
detected by Richard and Miller (1990) in a ‘double-barreled’
chloride channel, and for one sort of NMDA receptor, NR1-
NR2D (Wyllie et al., 1996). In the latter, transitions from the
35-pS level to the 17-pS level are more common than
transitions from 17 to 35 pS. A similar asymmetry was found
in a mutant NMDA channel (Schneggenburger and Ascher,
1997). Thus, although most channels appear to behave in
a manner consistent with microscopic reversibility, it is not
universal. That is hardly surprising because any interaction
between ion flow (which is not at equilibrium) and gating
could cause such an effect (Lauger, 1983; Finkelstein and
Peskin, 1984). That seems to be what is happening in both
chloride and NMDA channels.

SETTING MICROSCOPIC REVERSIBILITY

In a simple cyclic mechanism such as that shown in Fig. 1, it
is easy to ensure that the rate constants obey microscopic
reversibility. The fact that the product of the rates going
clockwise is the same as the product going anticlockwise,

k12k23k34k4] = k21k14k43k327 (1)

allows one of the rate constants to be calculated from the
other seven. Thus, if it is chosen to set k;, by microscopic
reversibility then

23K34K41

When rate constants are being fitted to data, the seven rate
constants on the right-hand side are free parameters, to be
estimated, and at each iteration the corresponding value for
the eighth rate, k;, in this example, is calculated from Eq. 2.
This is what is done in fitting programs such as HIFCIT (see
Colquhoun et al., 2003). The ordering method and the
spanning tree method described in this article are now
implemented in HICFIT and the theory programs available
from http://www.dcsite.org.uk.
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FIGURE 1 A four-state cyclic reaction mechanism. The names of the
states in this example are intended to indicate that R is a receptor with two
different binding sites; either (states 2 and 4) may become occupied before
both are occupied (state 1). The labels on the arrows indicate the transition
rates and the corresponding equilibrium constants are shown as K| = ky»/ka1,
K> = kasfkso, K3 = kaslkza, Kq = kialkay.

If we are concerned only with equilibrium constants (say
K| = kiofkay, Ko = kpslksp, K3 = kasfkza, Ky = kyafks), then
Eq. 1 implies that one of the four equilibrium constants can
be calculated from the other three, thus

KK,
K =—. 3
'L, €Y

In more complicated reaction schemes it may not be
obvious how many rate constants are ‘free’ and how many
are fixed by microscopic reversibility, and still less obvious
how these rates should be calculated. In particular, several
proposed mechanisms for the NMDA receptor, and a few
that have been considered for ACh and glycine receptors,
contain cubic structures, and these schemes necessitated
a more systematic approach. Cubic mechanisms are
commonly postulated also for receptors that are coupled to
G-proteins (Weiss et al., 1996; see also Colquhoun, 1998).

There are three different methods that allow microscopic
reversibility to be set in mechanisms of any complexity. The
first method is to use the ‘obvious’ four-membered cycles as
above; in this case the resulting equations are not mutually
independent and the order in which cycles are set is crucial.
The second method is to discover cycles that are mutually
independent, so the order in which they are set does not
matter (not all of them will be four-membered cycles in this
case). Both methods will be described. The former method is
easier to understand at an intuitive level, and easier to apply
‘manually’ in simple cases, but the latter is more general and
also easier to program. The third method, which is described
in Appendix 2, is based on solving the equations for the
constraints and may be useful in cases of complicated
mechanisms when many physical constraints are imposed, as
well as microscopic reversibility.

Biophysical Journal 86(6) 3510-3518
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SETTING MICROSCOPIC REVERSIBILITY BY
ORDERING CYCLES

Consider the reaction scheme shown in Fig. 2. It represents
a two-dimensional reaction scheme with 16 states (one at
each vertex) and contains nine four-membered cycles
(numbered 1-9 in the diagram). It is obvious that if cycles
2, 3,4, and 5 were set first, then every connection in cycle 1
would have already been set and it would be impossible to
change any of them. However, if cycle 1 is set first, then 2, 3,
4, and 5, and lastly the ‘corner’ cycles, 6, 7, 8, and 9, then no
problems arise. The procedure is to set the cycles in order of
decreasing number of shared edges. The central cycle (1) has
four shared edges and so is set first. Cycles 2, 3, 4, and 5 have
three shared edges and are set next (in any order), and the
‘corner’ cycles, 6, 7, 8, and 9, have two shared edges and are
set last. This method allows microscopic reversibility to be
set in all nine cycles, so nine rates are so set. There are 16
states, 24 connections (equilibrium constants), and therefore
48 rate constants, of which 48 — 9 = 39 rates are free
parameters. Note that 24 — 16 + 1 = 9 (it is shown below,
Eq. 9, that this calculation is quite generally valid).

The scheme in Fig. 2 contains many cycles with more than
four members. The perimeter, for example, forms a cycle
containing 12 states. It is easy to show that if the nine
smallest cycles obey microscopic reversibility then any
larger outer cycle that encloses them also does so. The larger
cycles would usually be considered redundant. In more
complicated cases it may not be obvious which cycles are
‘redundant’, but the spanning tree method (below) provides
a simple solution to that problem.

Consider next a reaction mechanism with eight states
(vertices) in a cubic arrangement, as shown in Fig. 3. This
has six four-state cycles (six faces), 12 connections (edges),
and 24 rate constants. If we again restrict ourselves to four-

5@6@7@8
©|0|06
ol NoNNo

13 14 15 16

FIGURE 2 Representation of a two-dimensional reaction scheme with 16
states (one at each vertex). It contains nine four-membered cycles (numbered
1-9 in the diagram).
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state cycles, we again find that the order in which they are set
matters.

Suppose we set microscopic reversibility (as in Eq. 2) for
the top, bottom, front, and back faces (cycles). This leaves
the left and right faces to be set. But every rate constant in
both of these faces is part of a cycle that has already been set,
and which therefore cannot be changed, so only four faces
can be set. If, however, we start by setting top, bottom, back,
and left faces, we are left with the front and right faces, and
the front face can be set because it has a link (2-3) that is not
part of a cycle that has already been set. We still can’t set the
sixth face, but we don’t need to do so because it is easily
proved that if five faces obey microscopic reversibility, the
sixth must also do so. Order matters: the last two faces must
be adjacent, not opposite.

This sort of argument can be extended to more complex
schemes. For example in a 3 X 3 X 3 stack of cubes (27
cubes, 64 states, 108 four-membered cycles, 144 connec-
tions, 288 rate constants) it is obvious that the central cube
(which shares all of its faces with outer cubes) must be set
first.

The need for setting cycles in a particular order arises from
the fact that the equations for calculating rates from them are
not independent. For example, the top face in Fig. 3 is a four-
state cycle containing states 1-2—7-6. If, say, we choose to
set k1, from this cycle we have

kiskeka2

ki, = kpy————.
2 P e keker

“4)

If we then calculate, say k3 from the front face (the four-
state cycle 1-2-3-4) we use

k21k14k43
kyys = kyp——". 5
n =k b ©)

4 3

FIGURE 3 A reaction mechanism with eight states (vertices) in a cubic
arrangement.
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Notice that ki, is on the left-hand side of Eq. 4, but also
occurs on the right-hand side of Eq. 5. This causes no
problems as long as &, is evaluated before it is needed, but it
is in this sense that the equations are not independent, and
that is why the order in which the cycles are set matters.

In summary, the following rules of ordering work for the
setting of four-membered cycles in all cases we have
encountered.

1. If the mechanism contains cycles that are not part of
a cube, then these are set first, after ordering the cycles in
decreasing order of the number of shared connections
(edges) they have. Those with the most shared edges are
set first.

2. If the mechanism contains cubes then locate them and
rank them in order of increasing number of external
faces.

3. Set microscopic reversibility in each cube (as above),
starting with the cube with fewest external faces.

4. For each cube, before setting microscopic reversibility,
order the six faces so: a), internal faces are set before
external, and b), if necessary, reorder the last two of the
six faces so that the last two faces are adjacent to one
another, not opposite. For example, if the last two faces
were (5) top and (6) bottom, then setting the top face
earlier will prevent the last two faces from being
opposite.

The ordering method has been illustrated only for four-
state cycles. Clearly it would work equally well for three-
state cycles, though for schemes that contained cycles of
mixed sizes some modification might be needed. For
example, a three-state cycle with three shared edges would
be set before a five-state cycle with four shared edges, to
make sure each cycle has at least one edge that hasn’t already
been set by something else.

SETTING MICROSCOPIC REVERSIBILITY BY
THE SPANNING TREE METHOD

The necessity for setting cycles in a particular order arises
from the fact that, when cycles always have four members,
the equations for microscopic reversibility are not in-
dependent of each other (see Eqs. 4 and 5). In a quite
different context, a method for choosing linearly indepen-
dent cycles is well known. The answer lies in graph theory
(see, for example, Gibbon, 1985), a topic that is also relevant
to the existence of correlations in reaction mechanisms
(Colquhoun and Hawkes, 1987).

The reaction mechanism is described as a graph, each state
being a vertex and each connection between states (the pair
of rate constants) being an edge. The mechanism is called
a connected graph, because any state is accessible from any
other, directly or indirectly. The essential idea for our
purpose is the spanning tree. A tree is a connected graph that
contains no cycles, and it is called a spanning tree if it

3513

connects all the states (vertices). The idea can be illustrated
simply by the reaction schemes in Figs. 2 and 3.

Fig. 4 shows, as heavy lines, two examples of the many
possible spanning trees for the 16-state mechanism in Fig. 2.
It is well known that the number of connections (edges) in
a spanning tree must always be one fewer than the number of
states in the mechanism: a proof can be found in Gibbon
(1985). Denoting the number of connections in the spanning
tree as Cyee and the number of states as s,

Cree =8 — 1. Q)

Thus, all trees in this case have 15 connections, leaving
24 — 15 = 9 connections not in the tree. These nine

A

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
B 1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

FIGURE 4 The 16-state mechanism in Fig. 2, with two examples of the
many possible spanning trees shown, as thick lines.
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connections are the ones that can be set by microscopic
reversibility, and the cycle that is used to set them can be
found by locating the (unique) path along the spanning tree
that joins the two states in question. For example in Fig. 4 A,
the connection between state 2 and 6 would be set by mi-
croscopic reversibility, and the route between them along
the tree is 2—-1-5-6, so if k,c were to be set it would be
calculated as

ka1 kiskse
ko = kgp———. 7
2% = Koy @)

In this case the cycle is four membered, as in Eq. 1. But to
set microscopic reversibility for the connection 4-8, the
route along the tree from state 4 to state 8 involves eight
states (4—3-2-1-5-6-7-8), so to set, say, k4g we would use

kazkso ko1 kisksekerkss

kag = k .
T M ks kaokes ks kokaskas

®)

In this example there are three cycles with four states,
three cycles with six states, and three cycles with eight states.
Fig. 4 B shows another possible spanning tree. This one
gives rise to five four-state cycles, two six-state cycles, one
eight-state cycle, and one 10-state cycle. The 10-state cycle
arises when microscopic reversibility is set for the 2-3 route:
the route from state 2 to state 3 is seen to be 2—1-5-9-13—
14-15-11-7-3.

If all nine expressions of the sort above are written out, it is
seen that none of the nine rate constants that are being
calculated (on the left-hand sides) appears on the right-hand
sides of the equations. In this sense the equations are
independent, and the order in which they are set is irrelevant.

The proof that this method can be applied to find
independent cycles in any reaction mechanism can be found
in Gibbon (1985), who gives:

Theorem 2.7 ‘A set of fundamental circuits, with respect
to some spanning tree of a graph G, forms a basis for
the circuit space of G.”

Corollary 2.1 ““The circuit space for a graph with e edges
and v vertices has dimension (¢ — v + 1).”’

Translated into our language, these mean that, quite
generally: 1), the cycles found from the spanning tree are
independent, so the order in which they are calculated does
not matter, and 2), the number of connections that are set by
microscopic reversibility, ¢, for any mechanism is

Cmr = Ciot — Ciree = Cot — S T+ 17 (9)
where ¢ is the total number of connections in the reaction
mechanism.

This shows that microscopic reversibility can be set,
regardless of order, in the independent cycles identified by
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the spanning tree. But can we be sure that doing this will
ensure that all of the other cycles that can be found (often
very numerous) will also obey microscopic reversibility? A
formal demonstration that this is true is given in Appendix 1,
which extends theorem 2.7 in Gibbon (1985) to show that if
microscopic reversibility is obeyed in the fundamental cycles
then it will also be obeyed for any cycle found by combining
them. A stochastic argument that leads to the same
conclusion is also given in Appendix 1.

In the examples in Fig. 4, the number of connections that
are set by microscopic reversibility is thus 24 — 16 + 1 =9,
as already found by the ordering argument.

The cubic mechanism (Fig. 3) has s = 8 states, so from Eq.
6 all spanning trees must have ¢y .. = 7 connections, and
from Eq. 9 the number of connections set by microscopic
reversibility is 12 — 8 + 1 = 5, as found by a different
argument in the first section. Fig. 5 shows the cubic
mechanism in Fig. 3, projected in two dimensions, and the
thick lines show one of the many possible spanning trees. For
this particular case, the five connections to be set by
microscopic reversibility are 5-6, 7-8, 2-7, 7-8, and 3-8.
The cycles for setting these are all four-state cycles apart
from 7-8, for which the cycle is six-state, 7-6—1-4-5-8.

PRACTICAL IMPLEMENTATION AND THE
INCORPORATION OF PHYSICAL CONSTRAINTS

In practice one often wishes to constrain the values of some
of the rate constants, for physical reasons. For example,
some rate constants may be set to be equal to ensure that
binding of a ligand to one binding site is independent of
binding to another site. It may also be required to set
a particular rate constant to produce a specified ECsg
(examples are given by Colquhoun et al., 2003; Hatton et al.,
2003). A rate constant cannot be set by such a physical
constraint if it is set by microscopic reversibility, so we may
wish to construct a particular spanning tree, one that contains

4 3

FIGURE 5 The cubic mechanism in Fig. 3 is shown projected in two
dimensions, with thick lines indicating one of the many possible spanning
trees.
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specified connections, namely all those connections that one
wishes to constrain.

There is a beautifully simple way of doing this that is easy
to implement in a computer program. In our problem the
connections between states are logical rather than physical,
but in many applications the connections (edges) have
a number such as a length or a cost attached to them. For
example, a common application is to design a road or railway
network to connect several towns. In such cases the spanning
tree with minimum length, or minimum cost, is required.
This is known as a ‘minimum spanning tree’. Very efficient
algorithms exist for finding minimum spanning trees
(Gibbon, 1985); Prim’s algorithm (Prim, 1957) is a well-
known one. To force particular connections to be part of the
spanning tree, so that we may constrain them later, we assign
to them an imaginary length that is shorter than the length for
the connections that are to be set by microscopic rever-
sibility, and then use Prim’s algorithm. If a tree exists that
contains all the required routes, this method will find it.

Similarly it is possible to specify which connections you
would like to set by microscopic reversibility by assigning
them a longer imaginary length so that a spanning tree will
be found that excludes the specified connections if that is
possible. For example, the following values will guarantee
a spanning tree with the right properties if such a tree exists:
‘length’ = 1 for routes that are to be included in the tree,
‘length’ = 2 for other routes apart from ‘length’ = s (the
number of states) for routes that one wishes to set by
microscopic reversibility.

As an example of constraints, consider the simple case of
binding to two different binding sites, which can be
represented as shown in Fig. 1. In the case where the sites
are independent, so binding to one is unaffected by whether
or not the other is occupied, we wish to apply the constraints

kis = ko3 (10)
ka1 = k3 an
kiy = ka3 12)
ka1 = kag. 13)

In Colquhoun et al. (2003), k4, k41, and k, were found
from the constraints (Eqs. 10-12), and k,; was then set by
microscopic reversibility (a procedure that ensures the fourth
constraint, Eq. 13, is also obeyed). In more complex
mechanisms it may not be at all obvious which rates to
constrain and which to set by microscopic reversibility. In
cases like this, in which the constraints alone are sufficient to
ensure microscopic reversibility, it is much simpler to set all
the constraints required by the physical problem (four in this
example), and to ignore spanning trees altogether. In difficult
cases it may be necessary to use the general method
described in Appendix 2.
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APPENDIX 1: PROOF THAT SETTING THE
FUNDAMENTAL CYCLES ENSURES THAT ALL
CYCLES OBEY MICROSCOPIC REVERSIBILITY

Kathryn. A. Dowsland and Frank G. Ball*

*#School of Mathematical Sciences, University of Nottingham, Notting-
ham NG7 2RD, United Kingdom

We need to prove that once microscopic reversibility has been set in the
fundamental cycles that are identified by the spanning tree, then all other
possible cycles will also obey microscopic reversibility, and so need not be
considered. We shall give two proofs, because each casts light on the
problem from a different point of view. The first proof is based purely on
graph theory, and the second takes a more stochastic approach.

Proof that combination of fundamental cycles
preserves microscopic reversibility

Theorem 2.7 in Gibbon (1985) tells us that we can obtain any circuit as the
‘sum’ of fundamental circuits, where ‘sum’ is defined as addition of the
edges modulo 2 and is usually denoted by the operator @ . Thus, if C; and C,
are circuits C; @ C, is a circuit or edge disjoint union of circuits formed by
those edges in C; or C,, but not both. To use this result to set microscopic
reversibility via the spanning tree method we also need to show that ©
preserves the microscopic reversibility property, i.e., we need to show that if
C, and C, satisty the necessary conditions then so does C; @ C».

To prove this we will make use of the following definitions and notation.
Suppose we a have a circuit C;. We define a ‘consistent orientation’ of C; to
be an allocation of a direction to each of the edges of C; such that we can
traverse the complete circuit following the edges in a forward direction. Any
circuit will have two consistent orientations, one of which will be the reverse
of the other. (We can obviously extend the definition to the case where C; is
an edge disjoint union of circuits.)

For a given consistent orientation let d;"(e) be the rate constant
associated with edge e in the forward direction for that orientation, and
d; (e) be the rate constant for edge e in the opposite direction.

Consider C3 = C; @ C,. We will start by showing that if we orient the
edges in C3 according to a consistent orientation, then for consistent
orientations of C; and C, the remaining edges must have opposite
orientations in the two circuits. We then show that this implies that if C,
and C, satisfy microscopic reversibility so does Cs.

The edges in C; and C, can be partitioned into three classes, E; = those
edges in C; but not C,, E, = those edges in C, but not Cy, and Eg = those
edges in both. Let G be the graph given by E| U E, U Eg. This will consist of
C3; = E; U E, (by definition) and the set of edges in Eg. As C; and C; are
circuits Eg must be a path or disjoint union of paths each starting and ending
at a vertex of C3. Consider any such path joining v; and v;. v; will be a vertex
of degree 3 in G and will represent a point in C5 where C; and C, meet.

Now assume that we direct the edges in £, and E, so that we have
a consistent orientation of Cs. Either the edge from C; or the edge from C,
will be oriented into v; and the other will be oriented away from v;. Assume
without loss of generality that it is the edge from C, that is oriented toward
v;. Then in a consistent orientation of C; the edges of the path in Eg must be
oriented from v; to v;. Similarly as the edge from Cs is oriented away from v;,
in a consistent orientation of C, the edges in the path must be oriented from
v; to v;. Thus the edges in the path will be oriented in opposite directions in
C and C», and this will be true of all such paths.

Thus if we orient the edges in E; and E, so that they form a consistent
orientation in C5 the edges in Eg will be oriented in opposite directions in the
corresponding consistent orientations of C; and C, and the following
equalities apply.

d'(e)=d,(e) and d,(e)=d; (e)Ve €E,
dy (e) = dy (e)

(AL.1)

and d, (¢) =d, (e)Ve € E, (Al2)
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d'(e)=d;(e) and d;(e)=d, (e)Ve € Es. (Al.3)

Now assume C; and C, satisfy the conditions for microscopic reversibility.
We have:

Colquhoun et al.

Now applying it to the link 5-6 yields

:@p _ k56k15
ks ° kesks,

Ps pr. (A1.7)

[[a @ JTa @=1]d(e [Tdie and [Jd (e)-[[d(e)=]](e)- [] s (e)

ecE; ecEp ecE; ecEp

= H d1+(e) : Hd;(e) : H d1+(e) ) H d;(e)

ecE; ecEy ecEp ecEp

Substituting from Eqs. Al.1, A1.2, and Al1.3 gives:

[Ia @ JIa @ [[d) []a ()=

ecE; ecEy ecEp ecEp

=[[a' @ [Id @ =] []d@=]]a"@=]]d@.

ecE; ecEy ecE; ecEy

Equation A1.4 shows that the microscopic reversibility condition is indeed
satisfied by C3, as required.

By repeatedly applying the above result we have the required property
that any sum of a set of circuits satisfying microscopic reversibility will also
satisfy the condition.

A stochastic proof that setting the fundamental
cycles ensures microscopic reversibility

Kelly (1979) states, in his theorem 1.3: ‘A stationary Markov process is
reversible if and only if there exists a collection of positive numbers pj, j € S,
summing to unity that satisfy the detailed balance conditions

Pidyx = Py, .k €S. (AL.5)
When there exists such a collection pj, j € S, it is the equilibrium distribution
of the process.”” Here, S denotes the set of all states. In our language, p;
represents the fractional occupancy of state j, and g is the transition rate
from state j to state k (an element of the Q matrix), so Eq. A1.5 states that, for
areversible process at equilibrium, the frequency of transitions is the same in
each direction for every individual reaction step. This implies that the
products of rates going each way around a cycle must be equal, as
exemplified in Eq. 1 (e.g., Kelly, 1979; theorem 1.8).

To prove that setting the fundamental cycles ensures microscopic
reversibility, we find a collection p;, j € S, such that Eq. A1.5 is satisfied.
First note that there exists a unique collection p;, j € S, such that Eq. A1.5 is
satisfied for the links in the tree. Indeed, these p; are the equilibrium
occupancies for the process that has only the links in the tree, which is
reversible by Kelly (1979), Lemma 1.5. The setting equations (exemplified
in Egs. 2, 7, and 8), with these p;, show that Eq. A1.5 also holds for any link
that is not in the spanning tree, so the process is reversible and the p;
represent the equilibrium occupancies for our reaction scheme.

We can illustrate the above proof by considering the spanning tree in Fig.
4 B. The p; can be constructed explicitly as follows. Applying Eq. A1.5 to
the link 1-5 yields

kis

= . Al.6
k51p1 ( )

Ps
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ecE, ecEp ecE, ecEp

=TId () [Id:(e) [ di (o) [T (e

ecE; ecEy ecEp ecEp

IR I IFAGE IEAG

ecE; ecEy ecEp ecEp

(Al.4)

ecCy ecC3

Continuing in this fashion yields each of p,, ps, ..., p1s as a multiple of p;,
which can then be determined since the p; sum to one. Now consider a link
that is in the mechanism but not in the spanning tree, for example 2—6. The
rate koe is set using Eq. 7. Applying Eq. A1.5 to the links 1-2, 1-5, and 5-6,
which are in the spanning tree, implies that

ky  py kis  ps kss Do
== ==, and —=—.

T ) (A18)
ko py ks p kes  Ds

Substituting these into Eq. 7 yields p, k26 = pe k62, 0 Eq. A1.5 holds also for
the link 2—6. A similar argument shows that Eq. A1.5 holds for all the other
links that are not in the spanning tree. Note that the above proof indicates
that for a reversible process, the equilibrium occupancies depend only on the
equilibrium constants.

APPENDIX 2: CONSTRAINTS AS A LINEAR
SYSTEM OF EQUATIONS

The question of how to apply physical constraints, in addition to
microscopic reversibility, was discussed in the last section of the article.
The example used there can be used to illustrate a general way to deal with
this sort of problem.

In the example, it was found that the four physical constraints, Eqs. 10—
13, implied that microscopic reversibility, Eq. 1, is satisfied. This means that
these five equations are not independent. This can be shown as a general
property of linear systems of equations. To do this we shall use the
logarithms of the rate constants, denoted x = log(k). In the example there are
eight rate constants, the unknowns that are to be estimated. The eight log(k)
values can be arranged in an 8 X 1 column vector, x. The order does not
matter, but we can choose to start from &, and proceed clockwise up to k4
and then anticlockwise from k;; up to k3;.

Thus we define

x; = log(kiy), x, = log(ky),.. .,

xs = log(ky),..., xz =log(ks,). (A2.1)



Imposing Microscopic Reversibility

In this notation the constraints in Eqs. 10-13 are

Xe —Xx =0
X, —x3 =0
x1—x7=0
xs —x3 = 0. (A2.2)

In addition the constraint of microscopic reversibility can be written as a fifth
equation,

Xt Xt xs+xg —xs — x5 — X7 —xg = 0. (A2.3)
These constitute a homogeneous system of five linear equations with eight

unknowns, which can be written as

Moo

ap; =0 i=1,...,5 (A2.4)
j=1
This can be written generally in matrix form as
Ax =0, (A2.5)

where the coefficients, a;;, are elements of the 5 X 8 matrix, A, namely

ijs

0O -1 0 0 0 1 0 O
o0 0 1 0 0 0 -1

A=|1 0 0 0 0 0 -1 0 (A2.6)
0 0 -10 1 0 0 0
1 1 1 1 -1 -1 -1 -1

This matrix has rank 4, rather than the maximum possible rank of 5 for
a 5 X 8 matrix. This is exactly what was expected, because the five
equations above are not linearly independent. This means, in our context,
that four variables are determined by the constraints, leaving the other four
as free parameters the values of which must be given (e.g., they might be the
values of the free rate constants to be tried by a fitting program).

In the case of the cubic mechanism shown in Fig. 3, there are six 4-state
cycles, and 24 rate constants. The six microscopic reversibility constraints
can be written as six equations analogous with Eq. A2.3. When this is done
the matrix, A, of coefficients is 6 X 24 and is found to have rank 5. Thus, as
found above, five rate constants are determined by the microscopic
reversibility constraints leaving 19 free rate constants. Any further
constraints each add an extra row to A, the rank of which will indicate the
number of free parameters.

In general we will have a system with n unknowns (the total number of
rate constants in the model) and m constraints (the sum of the microscopic
reversibility constraints and the constraints to be imposed on some of the rate
constants). The number of independent constraints will be equal to the rank r
of the m X n matrix, A, (r = m). The number of free parameters is therefore
n — r. In a very complicated model with many cycles and physical
constraints to be imposed, the rank of the matrix of the associated linear
system may be the simplest way of determining the number of free
parameters.

We wish to find a general way to compute the r constrained rates from
n — r free rates. The theory of homogeneous linear systems (e.g., Schneider
and Barker, 1973) gives a solution as follows. Define B as any r X r
submatrix of A that has a nonzero determinant, and is therefore invertible. In
general there will be several such ‘nonnull minors’, and which one of them is
chosen will dictate which rates are calculated via constraints, just as choice
of one or another of the possible spanning trees does. After interchanging
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rows and columns of A if necessary, we can then write A in the partitioned
form

(A2.7)

B C
1o i)

where C is r X (n — r). The vector x is partitioned accordingly into

X.
x=["°],
X¢
where x. contains the r constrained log(rate) values, and x; contains n — r

free values.
From Eq. 2.5, Ax = 0, is equivalent to

(A2.8)

Bx. + Cx; = 0, (A2.9)

and the solution of this is

x. = —B'Cx;. (A2.10)

This provides a general way of calculating the constrained values from the
free ones.

We have benefited enormously from discussions with Assad Jalali and Alan
Hawkes (European Business Management School, Swansea), Francis
Johnson (Mathematics, University College London), Frank Kelly (Statis-
tical Laboratory, Cambridge University), and Lucia Sivilotti and Chris
Shelley (Pharmacology, University College London).
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