Asymptotic Distributions of Apparent Open Times and Shut Times in a
Single Channel Record Allowing for the Omission of Brief Events

A. G. Hawkes, A. Jalali, D. Colquhoun

Philosophical Transactions: Biological Sciences, Volume 337, Issue 1282 (Sep. 29,
1992), 383-404.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Philosophical Transactions: Biological Sciences is published by The Royal Society. Please contact the publisher
for further permissions regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org.

Philosophical Transactions: Biological Sciences
©1992 The Royal Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2000 JSTOR

http://www.jstor.org/
Mon Nov 13 13:11:59 2000



Asymptotic distributions of apparent open times and
shut times in a single channel record allowing for
the omission of brief events

A. G. HAWKES,! A. JALALI! anp D. COLQUHOUN?

YStatistics and Operational Research Group, European Business Management School, University of Wales, Singleton Park,

Swansea SA2 8PP, U.K.
2Department of Pharmacology, University College London, Gower Street, London WCIE 6BT, U.K.

SUMMARY

The openings and shuttings of individual ion channel molecules can be described by a Markov process
with discrete states in continuous time. The predicted distributions of the durations of open times, shut
times, bursts of openings, etc. are all described, in principle, by mixtures of exponential densities. In
practice it is usually found that some of the open times, and the shut times, are too short to be detected
reliably. If a fixed dead-time 7 is assumed then it is possible to define, as an approximation to what is
actually observed, an ‘extended opening’ or e-opening which starts with an opening of duration at least 7
followed by any number of openings and shuttings, all the shut times being shorter than 7; the e-opening
ends when a shut time longer than 7 occurs. A similar definition is used for e-shut times. The probability
densities, f(¢), of these extended times have previously been obtained as expressions which become
progressively more complicated, and numerically unstable to compute, as t—00. In this paper we
present, for the two-state model, an alternative representation as an infinite series of which a small
number of terms gives a very accurate approximation of f(¢) for large ¢. For the general model we present
an asymptotic representation as a mixture of exponentials which is accurate for all except quite small
values of ¢£. Some simple model-independent corrections for missed events are discussed in relationship to

the exact solutions.

1. INTRODUCTION

Single channel recording has a substantially better
time resolution than the methods that preceded it, so
it is not surprising that it has revealed rapid events in
channel function that were previously unsuspected
(e.g. Colquhoun & Sakmann 1985). However, experi-
mental records always seem to show phenomena that
are just too rapid to be resolved easily, whatever
efforts are made to increase the resolution. The
filtering effect of the recording apparatus is such that
the rise-time (10-90%,) of the observed signal, in
response to a square input, is at best 30-35 ps. This
means that an opening of the ion channel that is
shorter than 20-25 us will not be detectable given the
noise which is necessarily present to some extent in the
recording. The resolution is very often worse than this,
up to 500 pus or more, depending on the signal:noise
ratio in the experimental record and on the method
used for its analysis (see Colquhoun & Sigworth
(1983) for details). Events (openings or shuttings) of
the channel that have a duration much shorter than
the resolution will not be detected. Long events will
always be detected whereas events of intermediate
duration will be detected sometimes and not others.
This will cause a potentially serious distortion of the
results. Several approximate methods have been des-
cribed for coping with this ‘missed event’ problem, for
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example by Roux & Sauvé (1985), Blatz & Magleby
(1986), Ball & Sansom (1988), Yeo et al. (1988) and
Crouzy & Sigworth (1990). An exact solution to the
problem was found by Hawkes et al. (1990); in this
paper we discuss some forms that are easier to
compute, and which approximate the exact solution
closely.

It is supposed in what follows that all events that
are shorter than some fixed resolution or dead-time
(denote 1) are not detected, whereas all events that
are longer than t are detected and measured accu-
rately. The resolution is usually not well defined, so it
must be imposed retrospectively on the measurements
by, for example, concatenating any observed shut
time below 7 with the open times on each side of it to
produce one long ‘apparent opening’ (Colquhoun &
Sigworth, 1983). This will happen automatically with
very short shut times which will not be observed
anyway. Short openings are similarly treated to obtain
‘apparent shut times’. Further discussion of the prob-
lem of resolution is given in Hawkes et al. (1990).

2. NOTATION AND BASIC RESULTS

The principles and notation are those employed by
Hawkes et al. (1990). The underlying system is
modelled by a finite-state Markov process, X(¢), in
continuous time; X(¢) =¢ denotes the system is in state

© 1992 The Royal Society
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¢ at time ¢. The rate constants for transitions between
states ¢ and j (¢#j) are the elements, ¢; of the
transition rate matrix . The elements of @ have the
dimensions of reciprocal time, and the diagonal
elements, ¢;;, are defined so that the rows sum to zero,
so — 1/g; is the mean lifetime of a sojourn in state z.

If the states are divided into subset &/ containing
the open states, £, in number, and subset & contain-
ing the shut states, k# in number so £y + kz =£, then
the @-matrix may be partitioned as

Q — [Qﬂd Qm’f:] (1)

Qfﬂ Q?f

A semi-Markov process (for an elementary intro-
duction see, for example, chapter 9 of Cox & Miller
(1965)) is embedded in the process at the instants
at which the system enters the set &/ or enters set .
The intervals between these points have probability
densities given by the matrix

0 exp(Q .00 5
“w :[exp(ng,t)Q%d ﬂ{){ ! :I

Thus each event is, alternately, the beginning of an
open period or the beginning of a closed period. The
element g;(¢) of this matrix is the probability density
of the time to the next entry into a new subset and the
probability that the state entered is 7, conditional on
starting in state ¢ The Laplace transform of this
matrix will be denoted by

(2)

0 G* (s)]
G* — AF , 3
(5) [G;d(s) 0 (3)
where
G(;z«" () =0I-Q,,)" : Qs
Gl () =(I-Qzy) - Ry (4)

From these transition densities the open- and closed-
time distributions are readily found. For example, the
equilibrium distribution of open times has probability
density function

f(t) = ¢OCXP<QJ/&1I) Q‘g,@u/;
= ¢OCXP<QJ/&/)( - Qd(g)u&p (5)

where
(bO :p‘o;(oo)Qg&//P¢<oo)Qgrﬁuﬁ (6)

In these results, which were given by Colquhoun &
Hawkes (1982), p#(00) is the & partition of the vector
of equilibrium probabilities (i.e. the fraction of recep-
tors in each state at equilibrium), and the initial
vector, ¢, gives the equilibrium probabilities of an
opening starting in each of the open states; uy and ug
are vectors of units. Similar results can be obtained for
shut times. By using the spectral expansion of the
matrices exp(Qu»t) and exp(Qzzt), these distribu-
tions may be represented as mixtures of exponentials,
assuming the Q-matrix corresponds to a time-rever-
sible process (see Colquhoun & Hawkes 1982, pp. 24—
25; Kelly 1979). When, as is usual, the eigenvalues are
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distinct the numbers of components in the mixtures
are, respectively, the numbers of open and shut states
ky and kg. Fitting mixtures of exponentials to
observed histograms has therefore been used to obtain
lower bounds for the numbers of open and shut states.

These distributions may be considerably distorted
by an inability to detect very small intervals. We
suppose a constant critical gap or dead-time, 7, such
that open or shut periods of duration less than this are
missed. One could take different dead-times for open
and closed times, but it is not necessary in practice
and complicates the theory. We suppose, after Colqu-
houn & Sigworth (1983), that an observable open
time begins with a sojourn in the .7 states of duration
at least T and ends at the beginning of the next sojourn
in & of duration greater than t. Thus, the observed
open time may consist of 7 shut times, each of duration
less that 7, and 7+ 1 open times, of which the first must
exceed 7. Observed shut times may be defined similarly.

Following Ball & Sansom (1988), we will consider a
semi-Markov process whose events occur at time T
after the start of observed open or closed periods. An
event type (open or shut) will be the state of the
underlying Markov process, X(¢), which is occupied at
that time. The durations of the intervals between
events, which we will call e-open and e-closed inter-
vals, are identical to the durations of the observed, or
‘apparent’, open and closed intervals, because we
have taken the same 7 to detect both open and closed
periods (though in practice it is possible, in rare cases,
that a rapid succession of short openings and shuttings
could give rise to a signal that could not be measured
unambiguously). These definitions are illustrated in
figure 1.

Intervals of this process will be alternatively e-open
and e-closed, so the transition densities will be given
by a matrix of the form

coin |0 Gu0)
G(t) - l:eG do j|> (7)

e 0 °G *7(5)
G (5) - lieGr@*&/@) MO j| (8)

The Markov chain embedded at the event points (the
times at which events occur) has transition matrix

0 G,
G = [eG 6“] 9)
F oA

Here we simplify the notion when setting s=0 in a
Laplace transform by omitting the ‘“*’ and the argu-
ment: for example, in this case CG(;}(O) is written as
‘Guz.

By looking only at alternate events, and ignoring
the interval durations, we have a Markov chain on the
&f states with transition matrix °G,#°G#, and equi-
librium probability vector, ¢, satisfying

O =04Gy5°Gr .y, Py =1. (10)
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observed open interval

e-open interval
p —
T T

} —

excess e-open interval

Figure 1. Illustration of the definition of an observed open
interval, e-open interval and excess e-open interval for a
channel with two levels of conductance and dead-time 7.
The e-open interval is equivalent to an-observed open
interval shifted by an amount 7. The events of the semi-
Markov process defined in the text occur at points marked 1.

A Markov chain at the closed events has transition
matrix ‘Gz ,°Gy# with equilibrium vector

5= Cus. (11)

The solution of equation (10) for ¢, can be found by
rearranging in the form ¢, (/—°Gy#°Gzz) =0, and
then using the methods described by Colquhoun &
Hawkes (1987) or Hawkes & Sykes (1990) for solution
for equilibrium occupancies (the equation for which,
p(0)@=0, has the same form). The results below,
and those given by Hawkes et al. (1990), show that
Gy # can be evaluated as

Gug={1—Guyz(I—exp(Qzs7))Grua} ™" Gus
exp(Qz#1),

and °Gz, is the same, except that &/ and & are
interchanged.

We will discuss the probability density of e-open
times; the distribution of e-closed times can be
obtained simply by interchanging & and & in the
notation. Let “R(f) be a matrix whose #jth element
(t,je ) is

“Ry(t) =P [X() =j and

no shut time is detected over (0,)

X(0)=1], (12)

where a detectable shut time is a sojourn in & of
duration greater than 7. This is a kind of reliability or
survivor function: it gives the probability that an e-
open time, starting in state 7, has not yet finished after
time ¢ and is currently in state j. Then the transition
density is given by

Gz (t)="R(t— 1) Qusexp(Qzr#T),

because, for the e-open interval to end at time ¢, there
must be a transition from & to & at time t—1 (with
no detectable sojourn in & up to that time) followed
by a sojourn of at least T in F. ‘Gys(l) is an
important function as it enables one to write down a
likelihood for an observed record (see Discussion), and

(13)
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because the probability density of observed open times
is given by

Sr(t) =04 Guz(t)ug,

a result that resembles, in its notation, that found
when events are not missed.

The distribution of e-open times covers the range
t=1 to o (see, for example, figure 3) because, by
definition, any e-open time, 7 say, must exceed T in
duration. It is more convenient to consider the excess
time 7= T—1, which ranges from 0 to c0. We will
call this the excess e-open interval (see figure 1). Then
the probability density function (PDF) fr(t) =f7 (t—1)
and so

Jr(t) =¢ G 5t +71)u,
= ¢MMR([) Qﬂgrexp(ng'yT)ug:‘ (15)

It follows that “R(¢) is the key to the problem.
Hawkes et al. (1990) show that its Laplace transform
can be written as

TR*(s) = {I = G (5)8 5, (5)GF,(s)}

FF ) g
(s —Q,,)" " (16)

where S;g (s) is defined by the equation

(14)

T

J;:” exp(Qg;ﬁ[)dt
D S exp(— (I - Q)TN — Q) !
= S50 = Qgg)

Substituting equation (17) into equation (16), and
using equation (4) yields the alternative expression

(17)

Ja”'R”‘(s) = |:51— Qm:/ —

QW< Jeﬂf exp(QW;)dz> QW]_ . (18)

These results were given, using different notation,
by Ball & Sansom (1988), generalized to allow
different critical intervals 7., and T#, which could be
random variables, for open and closed intervals. They
also gave general expressions for moments, which are
easily obtained from equations (15) to (18).

(a) Probability density of excess e-open lifetimes

Hawkes et al. (1990) inverted the above transform,
and hence obtained the pdf f7 (¢) in a form such that,
for ¢ in the interval I, | = (nt,(n + 1)1),

k

S0 = X 0u(0)exp( = M),

where 8;,(¢) is a polynomial of degree z in ¢ and A;, Aq,
. . . A are the eigenvalues of — Q. Thus, there is no
single functional form, but a different form over each
of the intervals /,. Unfortunately the number of terms,
and their complexity, increase as n increases. How-
ever, in this paper we find good approximations by
simple forms for large ¢.
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The general calculation of the above density is a
little complicated, but the exact calculation is, as
shown below, usually needed only for small ¢, for
which the calculation is relatively simple. We there-
fore quote below the results for ¢ in the ranges (=0 to 7
and ¢=7 to 21, which turn out to be adequate for
practical purposes (these refer to excess times so they
correspond to events with durations 7 to 27, and 27 to
37, respectively). The starting point is the represen-
tation of the matrix @ in terms of the spectral matrices
4,, see for example Colquhoun & Hawkes (1982), so

ZAexp —At).

i=1

exp(Qt) = (19)

Let 4;v7 be the o/ F partition of 4; and define

D; = Aiazexp(Qs57) Qg s (20)
Then the required density is given by
S =) 0<i<r,

= folt) — fi(t — 1) T<t< n, (21)
where

Jo (¢ Z%ooexp — A),
i=1

. (22)
Z (Va0 + Yiit) exp( — Ad).

i=1

Ji(t) =

The constants y;,, are given by

Yimr = ¢McimrQ,d‘o;eXp(Qgeyr)ulga (23>

where the matrices C;,, are given recursively by

CiOO = AM&/,

Cio = Z (DCioo + D;Cio0) [(A; — Ai), (24)
J#i
Ciy = DiCyo

(b) Individual openings

It may be of interest to know something about the
individual openings that go to make up an e-opening.
The theory is somewhat analogous to the study of
bursts of openings in Colquhoun & Hawkes (1982).
Let R be the number of openings in an e-opening,
then its distribution is given by

P(R=1)=¢,(G,,8,,G, )"
(I =G 385565 ), (25)
PR=1)=¢ (G ,8,,G, ) tu, r=1,

the average number of opemngs being
ER) = ¢,(I—G,,8,,G,,) u, (26)

AFOFF F st
We note that, by definition, the first opening of an
e-opening does not include the initial dead-time t (see
figure 1). Then the probability density of the lifetime,
T,, of the rth opening of an e-opening, given that it
exists, is given by

S0 = — b (GlS,,G,,) !
eXP(Q oyt @ oy oty P(R 2 7)

Phil. Trans. R. Soc. Lond. B (1992)
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whereas the entry probabilities at the start of the rth
opening (i.e. the probabilities that it starts in each of
the open states) are given by the elements of the vector
¢ (G856 "~YPR =7). (28)

55550 5.4)
The mean open times, starting from each possible
open state, are given by the elements of the vector

P (29)

oA o JZ/’

which, when averaged with respect to the probabili-
ties in equation (28), gives the mean value of the
distribution in equation (27) as

E(T) =

= ¢,(G 555565, ', &m* uy |P(R=7).

(30)
An e-opening may contain some short shut times.
The average total open time per e-opening, i.e.

excluding the shut portion, is

open Z E )

- —¢,0-G,,8,,G

AF-FF ?M)

In these equations, using our notational convention,

G5 = G;}(O) =-0Q };ngﬂ
and

SW - SW<0) = (I — exp(Q,47)).

Equivalent results for shut times are obtained by
interchanging &/ and &; in particular, E(7u)
denotes the mean total shut time per e-shut time.

3. THE TWO-STATE MODEL

The simplest possible model, comprising just one open
state and one closed state, has naturally received most
attention in the literature. The @-matrix can be
written as

o=y 2]

so — @ has eigenvalues X\, =0, =0+ f. Both open
and shut times consist of sojourns in single states so
that, for example, the individual open times have
negative exponential distributions with —means
E(T,)=1/a,Vr=1. The mean of the first interval of
the e-opening is the same as that of all the other
openings, so that E(7op) =E(R)/o, despite being a
continuation of the initial opening (duration t) of the
observed open interval: this is a well known property
of the exponential distribution which was noted in the
context of channel openings by Neher & Steinbach
(1978). The distribution of the number of openings in
an e-opening, from equation (25), is a simple geo-
metric distribution.

In this case ¢ and ug are unit scalars, so equation
(15) implies that

) = “R(t)ae 7, (32)
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whereas equation (18) implies that the Laplace trans-
form of “R(t) is

SR*(5) = l:s +o— aﬁ}e—<f+ﬂ)' dt:l_l = 1/W(s), (33)
0

or, alternatively,
YR*(s) = (s + B)/[s(s + o+ B) + afe= P, (34)
where equation (33) defines the function W(s).

Hawkes et al. (1990) obtained an exact expression
for “R(t), and hence f7(t), as a special case of that
described in § 2 above, and compared it with various
approximations which have appeared in the litera-
ture. They also indicated that the asymptotic beha-
viour of “R(t), and hence of fr(f), for large ¢ is
governed by the roots of the denominator, W(s), of
“R*(s); for a general treatment of the relationship
between asymptotic behaviour of a function and the
poles of its Laplace Transform see Smith (1966).
There is one real root s; <0 which exceeds the real
part of any other root. Thus it can be shown that as
t—00

Fi(t) = — ase™, (35)

where O<a<1. So we have a single exponential
density with an area which is not unity. This is not a
problem because this is the asymptotic behaviour of
the pdf, f7(¢): it is not an attempt to approximate the
whole distribution. In practice we have found that it
gives an extremely accurate approximation to the
exact pdf for ¢ larger than a few multiples of 7.

Jalali & Hawkes (1992a) have generalized this
result to give a complete representation of “R(t) by
the following theorem.

(a) Theorem

In addition to one real root s;, W(s) has infinitely
many complex conjugate pairs of roots s,=0,+ iw,,
Sp=0,— 1w, (n=2), with (6,=Re s,) < (si=01) <O0.

Then
o _
w1 Wy wy
+ ) + ——1,
S=81 JTols—%% S$—35

Wo= (S, + P) [0+ B+ 250+ Tsa(s2+ 00+ B)].

IRA(5) = 1[W(s) =

where

The inversion of this simple form of “R*(s) leads to
the representation of the probability density

Jr(t) = Zl (1)) exp( — t/un) [@rc08 (Wyt)
" + bysin(@,)],  (36)

where the time constants are given by

Mn = — 1/an> (37)
and the areas are given by
a; = ae Py, b, =0, (38)

corresponding to the real root, and for n>1
a, = Qae—ﬂrﬁn Fons
where

b, = — 20e~%q, Wy = po + iq (39)
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To compute f7(¢f) we should expect to get a good
approximation, at least for large ¢, by taking only a
finite number of terms from the series given in equation
(36), using those roots of W(s) which have the largest
real parts. The terms of the form exp(—¢/u,) die away
fast if u, is very small, i.e. o, is very negative, while we
also note that the coefficients a,, 4, corresponding to
large |s,,] tend to zero.

(b) Finding the roots

The real root s, is easily found by Newton-Raphson
iteration, treating W(s) as a function of real s and
starting the iteration at s=0, or by bisection. The
complex roots are more difficult. There are three
stages.

(1) The exploration stage
To simplify the problem slightly, let

y =P, o= (a/p)—1, x=14s/p. (40)

Then equations (33) and (34) suggest the definition of
h(x) as

(s+BYW(s)|B*=h(x) =x(x+0) — (1 +8)(1 —e™™). (41)

The roots of #(x) are equivalent to those of W(s) but
with an additional root at x=0, corresponding to
s=—f. Let x=u+w, where we need consider only
v>0. If this is a root of A(x) it satisfies 4(x)=0 or,
taking the real and imaginary parts separately,

u(u + 8) —v? — (1 +8)(1 — e "cosyv) =0, (42)
v(2u + 6) — (1 + 8)e” ™sin dv = 0. (43)
Eliminating the trigonometrical terms between these
gives
[u(u + 8) — 02 — (1 + &)1 + [0(2u + 8))?
—(148)%7 2, (44)
while
tan yo = — v(2u + 8)/[u(u + 8) — v* — (1 + 8)]. (45)
Equation (44) can be written as a quadratic in %
one of the solutions for »* is negative and so clearly of
no use and, as we only need to consider positive values
of v, we define the solution as a function of u to be
v=¢) ={—[(1+062)°+ (u+ /2% +
[(1+8)% %+ 4(1 + 6/2)(u + 8/2)°J31,
provided the result is real, i.e. if the expression in
braces is non-negative. Similarly, equation (45) can
be written as a quadratic in ¥ whose two solutions are,
by definition
u=1y,(v) = — [0/2 + v/tan yv]
— [(1 + 8/2)% + v?/sin? yo]?,
u=Yy(v) = — [0/2 + v/tan yv]
+ [(1 + 8/2)2 + v?sin? pv]2.  (48)
It can be shown that u <0 so that ¥, (v) is always valid
whereas ¥(v) may or may not be valid, depending on

the parameter values. Therefore, to find roots whose
real parts are greater than some arbitrary value, ur,

(46)

(47)
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i.e. u lies in the range ur <u <0, we define truncated
functions

‘H(”) = max(“T) min(os lpi(v))):

Then we plot the function ¢(u), ur<u<0, and the
two functions lﬁ?(v), 0<v<max(¢(u); u € (ur, 0)), on
the same graph. Any point (u,0) which is a point of
intersection of ¢(u) with either of the other two,
except if u=ur or u=0, is a potential solution.

i=1,2. (49)

(¢6) The improvement stage

These graphically obtained potential solutions will,
of course, only be approximate and must be improved.
Two methods are available:

Newton—Raphson. Given an approximate solution (u,,v,)
of equations (42) and (43), the improved solution is
given by

Open times with missed events

two models from Colquhoun & Sigworth (1983). We
will use milliseconds as the unit of time throughout.

Model CSF. A ‘fast’ model with dead-time t=0.2 ms
and (true) mean open and closed lifetimes given by
po=1/a=0.1063 ms, u.=1/=0.2148 ms.

Model CSS. A ‘slow’ model with the same dead-
time T as above but with (true) mean lifetimes
to=0.2990 ms, u.=0.8787 ms.

These two sets of values are of interest because,
despite the fact that they are quite different, they both
give identical values for the observed mean open and
closed times (0.6 ms and 2.0 ms respectively) when
events shorter than 0.2 ms are missed (the distribu-
tions, however, are not identical). It is worth noting,
at this point, that the values of 0.6 ms and 2.0 ms are

Uy 41 _ U, o 1 un(un-{—é)—1)”2—<1+5>(1—C_W"COS'})U,,)
<v,,+ 1) B <v,,> b (v”(Qun +8) — (1 + 8)e ™" sin y, (50)

where

D 2u, + 0 — (1 + d)e™ ™ cos y,
B 20, + (1 + 8)e ™" sin o,

Starting from a point given by the exploratory
graphical method, this will sometimes converge quite
quickly to an accurate solution. In case of any
difficulty one may use instead a bisection method.

Bisection method. Having identified a potential solu-
tion based on the intersection of ¢(x) and ¥;(v), say,
with » lying in some small interval (ur,un), one can
easily find the root u of the equation u—y;(¢(u))=0
within this interval by the usual bisection method.
Then v is given by ¢(u).

(22t) The checking stage

As we have manipulated the equations in a non-
linear way, it is as well to check by substitution into
equations (42) and (43) that a potential solution is not
spurious. We have found in practice that about half of
the potential solutions found in this way are spurious
and the rest are actual roots.

Having obtained the real root, s;, and a finite
number of complex roots, s,=pf(x,—1) where x,=
u, +1v,, we use equation (36) to compute the density
Sr(t), using a finite series of terms instead of the
infinite series. The accuracy, which is typically very
good for all except fairly small values of ¢, can be
checked against the exact method of calculating f7(¢)
discussed in § 2. Our recommendation is to use the
latter, which is in principle exact, for ¢ <7 at least and
switch over to the above approximation after some
range of ¢ for which the two forms agree closely. This
change-over point can be made smaller by finding
more roots (by decreasing the cutofl value uy used in
the root-finding procedure).

4. NUMERICAL EXAMPLES WITH TWO
STATES
(a) Examples

In this section we study three examples, starting with
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— 2v, — p(1 + 6)e~ " sin yu, 51
2u, + 6 — (1 + d)e ™" cos yu, )’ (1)

the means of the distribution of e-open times and of
e-shut times, respectively. They are, therefore, in a
sense ‘too long’, because values less than T are omitted
(they are what one would get by simply averaging a
large number of observed values). If data that obeyed
either of these models were fitted, over the range
where they were adequately described by a single
exponential, then most fitting methods (e.g. the
maximum likelihood method; Colquhoun & Sigworth
1983), would give results that corresponds to the mean
excess open and shut times, namely 0.6 —7=0.4 ms,
and 2.0—t=1.8 ms (the results in tables 1-4 show
that the single-exponential approximations to the true
PDFs have time constants that are close to these values,
especially for the slower CSS model). This happens
because the fitting process effectively extrapolates the
fitted curve to =0, and so includes (an estimate of)
the e-openings that were too short to be seen. The
result is close to the excess time because, for a single
exponential, it follows from equation (69) that the
mean of all values is less, by an amount 7, than the
mean of only those values that exceed t.

For the fast model the mean open time is less than
the dead-time, whereas the mean closed time only just
exceeds it. For the slow model both mean lifetimes are
greater than the dead-time. However, an observed
open or shut time will tend to consist of more intervals
in the fast model (E(R) =2.537 for openings and 6.563
for shuttings) than in the slow model (E(R) = 1.256 and
1.952). Consequently, E(7,,m)=0.270 ms, 0.375 ms
respectively for the fast and slow models (compare
with mean excess e-open time 0.6 — 7= 0.4 ms) where-
as the equivalent results for shut times are
E(Tu) =1.410 ms, 1.715 ms (compare with 1.8 ms):
this is a relatively small fraction for the fast model.
Note that, in the case of e-shut intervals in the fast
model, P(R>42)>0.001 so that more than one e-shut
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Figure 2. Distribution of e-open times in model CSF. (a)
Preliminary root-finding plot. Potential roots are the inter-
sections of v=¢(u) (solid line) and the function u=1i (v)
truncated at ur= —7 (dashed line); note that we find it
convenient to plot negative values of 4 along the horizontal
axis. Only half the intersections, marked by *, are actually
roots. The function ¥3 (v), shown dotted on the left, does not
have any intersections. (4) The exact probability density,
Sr(¢), of the full observed open times, computed as indicated
in Hawkes et al. (1990), as a solid line, together with the first
(dashed) and sixth (dot-dashed) asymptotic approxima-
tions. (¢) The exact density, f7(¢), of the excess e-open times
and the first, second, fourth and sixth asymptotic approxi-
mations over the range 0<t¢<1.

time in a thousand could contain at least 42 individual
openings!

First we study the distribution of e-open times for
the CSF model. Figure 2a shows the exploration stage
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of finding the roots of W(s) as described in the
previous section (note that we find it convenient to
plot v against —u). We see from equation (47) that the
function ¥, has infinitely many branches with asymp-
totes at v=nn/y for all positive integers n. The
potential roots are given by the intersections of this
with the ¢ curve. It happened that the Newton-
Raphson procedure failed on half the potential roots,
and these were found using bisection: at the checking
stage it turned out that these potential solutions did
not satisfy the original equations, so this failure is
hardly surprising. Note that it may be necessary to
start with quite a narrow interval of u values when
using the bisection method, to avoid jumping onto
another branch of the ¥, function. The actual roots,
marked on the graph with an asterisk, occurred on
alternate branches of the ¥, function in every example
we have studied, so that (reverting to the original
units) there is one frequency w within every cycle of
2r/1. No roots have been found on the ¥ function in
any of our examples.

By using the one real root and the first five complex
conjugate pairs of roots, the coefficients needed for the
first few terms of equation (36) are given in the top
half of table 1. Figure 26 shows the exact probability
density of e-open times, computed according to the
method of Hawkes et al. (1990), see § 2, the asymptotic
exponential arising from the real root and the asymp-
totic expression arising from equation (36) using the
exponential and the five damped oscillations. Note
that, of course, the density is zero for ¢ <1 because all
e-open times must, by definition, last for at least as
long as the dead-time. The exponential appears quite
good for ¢> 2t =0.4, whereas the six-term approxima-
tion appears good down to about ¢t=0.22.

To see how the accuracy improves for small ¢ as
we add more terms, we show, in figure 2¢, several
approximations to the probability density, f7(f), of the
excess time T=T—1 (using one, two, four and six
roots: it is too messy to show them all) for ¢ in the
range (0,7). Note that the approximations appear to
be getting worse at the origin itself: as with Fourier
series, we expect that the limiting value will be the
average of the values of the density on the right and
on the left of the origin (the latter being zero). One
cannot see much from the graphs about the accuracy
for large ¢, and so a summary is given in the lower half
of table 1. Over each of several ranges of ¢, expressed
as multiples of 7, we show the maximum absolute
percentage error of each approximation relative to the
exact density of 7. As expected, the exponential
approximation is poor for ¢<t but the error is less
than 0.0539, for ¢>21. As we move to the right in the
table, adding more terms to the series, we see the
accuracy steadily improving and reaching levels of
the order of 10-99,.

A similar analysis is carried out for the distribution
of e-shut times arising from model CSF, and reported
in table 2 and figure 3 (figures corresponding to
figures 2(a,) tend to look quite similar for all
examples so we do not include them routinely). We
note that the same general pattern exists but, with
shut times being longer on average, the distribution is
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Table 1. Model CSF: open times

(The top half of the table gives the parameters of the first six components of the asymptotic density of excess
observed lifetimes, 7= T—1, as defined by equation (36). The lower half of the table shows the maximum
absolute percentage error of the asymptotic forms relative to the exact density, over various ranges of ¢ each

successive asymptote is obtained by adding one extra component to the previous one.)

component 1 2 3 4 5 6
w/ms 0.42119 0.05006 0.03673 0.03195 0.02926 0.02748
o/(rad. ms~1) 0 27.175 59.602 91.673 123.51 155.21
area
a 0.94643 —0.00061 —0.00288 —0.00163 —0.00103 —0.00071
b 0 0.06691 0.02236 0.01268 0.00865 0.00648
t value range maximum error (%)
0-7/4 39 40 42 43 44 45
t/4-1/2 19 2.9 2.7 1.2 1.1 0.72
1/2-37/4 34 0.80 0.37 0.21 0.14 0.099
3t/4-1 3.2 0.51 0.19 0.083 0.050 0.028
21 1.5 0.19 0.059 0.026 0.018 0.012
21-3t 0.053 1.5x 1073 2.0x 10 5.0x10-% 1.7x107° 6.8x 108
3141 1.0x 103 8.6 x 106 6.0x10-7 8.7x10-8 1.9x10-8 5.5% 10-9
Table 2. Model CSF: shut times
(Description as for table 1.)
component 1 2 3 4 5 6
w/ms 1.8133 0.03999 0.03112 0.02767 0.02565 0.02428
o/(rad. ms™1) 0 25.513 58.842 91.172 123.13 154.91
area
a 0.99314 —0.00311 —0.00097 —0.00047 —0.00028 —0.00018
b 0 0.00930 0.00341 0.00203 0.00142 0.00108
t value range maximum error (%,)
0-t/4 23 34 38 41 42 43
T/4-1/2 9.8 1.3 1.7 0.66 0.71 0.42
t/2-31/4 2.6 0.41 0.13 0.074 0.048 0.037
3t/4— 0.56 0.17 0.047 0.025 0.013 8.5x% 103
21 0.38 0.048 0.015 6.4x 103 3.4x10-3 2.3x10°3
21-37 1.3x10-3 7.7%x 1078 1.2x10-% 3.1x10-8 1.1x10-8 44 %1077
3141 1.2x10-° 8.3x10-8 7.7%x10-° 1.3x10-° 3.0x10-1© 89x10-1
0.8 more nearly exponential: the area a corresponding to
the first component being closer to 1 and the asympto-
§ tic approximations more accurate.
2 0.6 Turning now to the slow model, CSS, we expect the
= distributions of e-intervals to be broadly similar to
5 those for the CSF model because they have the same
< 0.4 .
= means. There are, however, some differences as shown
B in Hawkes et al. (1990). The analyses are given in
.§ 0.2 table 3 and figure 4 for e-open times (compare with
g, figure 26) and in table 4 and figure 54 for e-shut times
(compare figure 3). We include also another example
002 0d i 5 of the initial root finding plot in figure 5a), showing
) r 2.r st 100 more potential roots, using truncation point ur= — 15,

_ time () / ms

Figure 3. Probability density of full e-shut times, f7(¢), in
model CSF, together with the first (dashed) and sixth (dot-
dashed) asymptotic approximations.
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although we have used only five of them.

It is evident from the figures that the slower process
is much more nearly exponential, and the area, a, for
the exponential coefficient closer to 1 in tables 3 and 4
than in tables 1 and 2; the percentage errors of the
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component 1 2 3 4 5 6
w/ms 0.40453 0.03304 0.02741 0.02481 0.02322 0.02211
o/(rad. ms~1) 0 22.489 57.462 90.259 122.45 154.36
area
a 0.98754 —0.01898 —0.00442 —0.00201 —0.00116 —0.00076
b 0 0.02485 0.01094 0.00673 0.00477 0.00366
t value range maximum error (9%,)
0-t/4 8.4 30 36 39 41 42
= 4.7 0.76 1.3 0.49 0.58 0.32
1/2-31/4 2.0 0.34 0.11 0.051 0.033 0.024
3t/4— 0.35 0.11 0.027 0.016 8.1x10-3 5.5% 103
27 0.13 0.029 9.6x10-3 4.2x10-3 2.2x10-3 1.3x10-3
21-31 49x10-3 1.7x 1075 4.1x10-8 1.2 x10-¢ 4.3x 107 1.8x 107
31-41 8.3x10-7 9.8x10-° 1.3x10-° 2.6 x10-1° 7.1x 101 2.3x 101
4 various asymptotic approximations are also less. Except
for component 2, the frequencies of the oscillations are
= very similar for the two models but they damp down
E 3 slightly faster (smaller u,) in the slow model.
*;’ We consider one further example in which one
§ 5 process is much slower than the other. The example
> was discussed by Blatz & Magleby (1986).
;"5“
_§ 1 Model BM2. Take dead-time 1=0.1 ms and a=1,
5, f=10 so that the mean open time, u,=1/e=1 ms, is
much longer than 7 while the mean shut time, p.=
1/=0.1 ms, is equal to 7.
0 02 %4 51 The observed open and shut times are increased, by
T T T

time (f) / ms

Figure 4. Probability density of full e-open times, fr(t), in
model CSS, together with the first (dashed) and sixth (dot-
dashed) asymptotic approximations.

Table 4. Model CSS: shut times

(Description as for table 1.)

missing short events, to 2.89 ms and 0.216 ms, respec-
tively. Clearly, open intervals are less likely to be
missed than shut ones (E(R)=1.105 shut times per
e-shut time) and so the mean excess observed shut
time, 0.216—0.1=0.116 ms, is not much more than

component 1 2 3 4 5 6
w/ms 1.8030 0.03034 0.02575 0.02349 0.02207 0.02107
/(rad. ms~1) 0 21.922 57.140 90.038 122.28 154.23
area
a 0.99828 —0.00399 —0.00102 —0.00047 —0.00027 —0.00018
b 0 0.00411 0.00213 0.00135 0.00098 0.00075
¢t value range maximum error (%)
0-t/4 5.0 28 34 38 40 41
T/4-1/2 2.7 0.56 1.0 0.37 0.46 0.25
t/2-31/4 1.1 0.23 0.077 0.035 0.019 0.015
3t/4-1 0.21 0.054 0.013 8.8x10-3 3.8x10°3 2.9x%10-3
21 0.036 0.012 4.1x10-3 1.9x10-3 9.9x10-* 59x10-*
21-3t 7.7x 1078 2.5% 106 7.2x 107 2.2x10-7 8.1x10-8 3.5x 108
3141 2.1x10-8 1.1x10-° 8.6x10-1 1.9x10-1 5.5x10-12 1.8x10-12

Phil. Trans. R. Soc. Lond. B (1992)
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Figure 5. Distribution of e-shut times in model CSS. In (@) the root finding plot shows more potential roots than in
figure 2, using truncation point ur= — 15, and Y3 (v) is completely truncated. Only the first five complex roots have
been used. In (b) is plotted the probability density of full e-shut times, f7(¢), together with the first (dashed) and
sixth (dot-dashed) asymptotic approximations.

Table 5. Model BM2: open times
(Description as for table 1.)

component 1 2 3 4 5 6
w/ms 2.7909 0.01335 0.01168 0.01076 0.01018 0.00975
/(rad. ms™1) 0 42.427 113.37 179.44 244.07 308.06
area
a 0.99972 —0.00112 —0.00032 —0.00015 —0.00009 —0.00006
b 0 0.00091 0.00057 0.00038 0.00028 0.00022
¢t value range maximum error (9,)
0-7/4 2.6 25 33 37 39 41
T/4-1/2 1.3 0.54 0.80 0.27 0.37 0.19
7/2-31/4 0.53 0.15 0.052 0.024 0.013 8.9x10-3
3t/4—1 0.11 0.026 6.0x10-3 46x10-3 1.9x10-3 1.6x 103
217 8.6x10-3 49x10-3 1.8x 1073 8.3x10°* 4.5x 104 2.7x 10~
2t-31 9.5x10-8 3.3x 1077 1.2x 1077 4.0x10-8 1.5x 108 6.7x 109
3147 3.7x10-° 1.0x 10~ 5.6 x 10-12 1.3x10-12 4.0x10-1 1.2x10-18
0.4I 10
2 i = 8
s 03 RS
2 2
£ 2 6
= =
3 02 S
2 2
i) )
< ©
8 01 g
g B2
0 0102 0.5 1 1.5 0 0.1 0.2 0.5
T 2t S5t 107 15t T 2t 5t

time (¢) / ms time (f) / ms

Figure 6. Probability density of full e-open times, f7(f), in
model BM2, together with the first (dashed) and sixth (dot-
dashed) asymptotic approximations.
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Figure 7. Probability density of full e-shut times, f7(¢), in
model BM2, together with the first (dashed) and sixth (dot-
dashed) asymptotic approximations.
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Table 6. Model BM2: shut times
(Description as for table 1.)
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component 1 2 3 4 5
wfms 0.11751 0.01565 0.01315 0.01196 0.01123
w/(rad. ms~1) 0 44.495 114.65 180.33 244.75
area
a 0.98112 —0.03140 —0.00727 —0.00330 —0.00190
b 0 0.03970 0.01790 0.01104 0.00785

t value range

maximum error (9%,)

0-t/4 7.7 30
T/4-1/2 4.5 0.76
1/2-31/4 2.0 0.36
3t/4-t 0.39 0.11
-2t 0.12 0.031
21-3t 54 x10-* 1.9x10-8
314t 7.2x 1077 1.4x10-8

36 39 41
1.3 0.50 0.58
0.12 0.053 0.32
0.028 0.017 8.1x10-3
0.010 4.5%x 1073 2.4x10-3
4.6x10-8 1.4x10-¢ 49x10°7
1.5x10-° 3.0x 10-10 8.5x 101

an average shut time (this is close to what would be
found by fitting data that obeyed this model; see
discussion at the beginning of §4. On the other
hand, the mean observed excess open time,
2.89-0.1=2.79 ms, is nearly three times the mean
open time (1 ms), and there are E(R)=2.718 open
times per e-open time. The density of e-open times is
plotted in figure 6 and an analysis of the excess e-open
distribution is given in table 5. The corresponding
analysis for e-shut times is given in figure 7 and table
6. Note that, in the latter case, only four complex roots
were found with the truncation point used. The slower
process, the open times, have a more nearly exponen-
tial distribution (the area, a;, for the first component
in table 5 being very nearly 1).

(b) General observations

From these examples we note that slower processes,

His)=@Q,,+

relative to the dead-time 7, tend to be more nearly
exponential. Also, in each example, we notice that the
oscillating frequencies, and to a lesser extent the
damping ‘means’ u, (except for the first, exponential,
component), are very similar for both open and closed
e-times. In all examples we have considered the simple
exponential asymptotic approximation to the probabi-
lity density of excess times, f7(¢), appears sufficiently
accurate for any practical purpose for (excess) ¢
greater than 7, or at most 27, using a criterion of 19,
accuracy. The complication of adding the damped
oscillations is aimed at improving the fit for small &
however, it is precisely for small ¢ that the exact
density given by equations (19-24) is simple and
accurate to compute.

Although the study of the damped oscillations has
been interesting, we conclude that a sensible recipe for
calculating these densities, f7(¢), is to use the exponen-
tial for large ¢, the exact density for small ¢, with the
change-over being made at some convenient point
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where they agree to a sufficient accuracy, usually
somewhere between T and 27.

5. THE GENERAL CASE

We now consider the general case where there are
more than two states. From equation (18) we see that
the asymptotic behaviour of “R(t), and hence of f7(¢),
depends on the values of s which render singular the
matrix W(s) defined as

Wi(s) = sl — H(s), (52)

where
T

H) = @y + Qs (je“exp(czﬁn dt) Qo (53)
0

or, if s is not an eigenvalue of Qz# so that

(sI-Qzz) "1 exists,

Qdy;('y]_ ny) - 1(1_ exp( - (‘YI_ Qgrg?)r)) ngg' (54)

In other words, we are interested in the roots of the
determinantal equation

det W(s) = 0. (55)

Jalali & Hawkes (19924) prove several theorems,
which we summarize here in the form of one compo-
site theorem.

(a) Theorem

1. If H(s) is irreducible (which follows if all states
of the Markov chain intercommunicate), det W(s) =0
has always a simple real root s; <0 which is greater
than the real part of any other root. Then s, is an
eigenvalue of H(s;) and asymptotically

YR(t) ~ eMeyr In W (s1)e)

where ¢, 7; are the corresponding right (column) and
left (row) eigenvectors and W7(s;) is the derivative
with respect to s of the matrix W(s) evaluated at the
root sj.
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2. When @ is irreducible and reversible (see Kelly
1979), det W(s) =0 has exactly £, real roots. If these
are distinct, then, as t— o0,

kot
YR(t) ~ _ZI oW (s))ei

where ¢;, 7; are the right and left eigenvectors of H(s;)
corresponding to the root s;, which is also an eigen-
value of H(s;).

The matrix derivative in the above results can be
evaluated as

Ws) = I+ Q. (S5 (s)(s] — Qzz) "
— (I =S} ()]G, (5), (56)

where S#%(s) and G#'(s) are defined in equations
(17) and (4), respectively.

As models of ion channels are always assumed to
obey the principle of microscopic reversibility, in the
absence of external energy supply (see Colquhoun &
Hawkes 1982, pp. 24-25), the second part of the
theorem is relevant. It follows from this theorem and
equation (15) that the probability density of excess
e-open times, f7(¢), will be asymptotically represented
as a linear combination of k£, negative exponential
terms. This is attractive because this is the same form
that the density has in the ideal case when no intervals
are missed.

We shall therefore represent the asymptotic proba-
bility density of excess e-open times in the form

S1(0) = 3, alUpexpl — u), (57)
where

mean u; = — l/s;,

area a; = ,U,i¢d€l'7iQMyeXp(nyf)u(g;/riW/(&i)Ci- (58>

We conjecture that, as in the two-state case dis-
cussed in §3, there will also be infinitely many
complex conjugate pairs of roots. This, however, is
rather more difficult to prove and the complex roots
more difficult to find. We have found that in practice
the approximation given by the real roots only is quite
sufficient.

(b) Finding the roots and eigenvectors

To implement the above results in practice we need
to be able to find the real roots and the corresponding
eigenvectors. One can make a plot of det W(s),
calculated from equations (52) and (54) as a function
of real 5, and identify the roots approximately. Each of
these can then be located precisely by a simple
bisection method.

Once a root s has been found, the left eigenvalue, 7,
can be found as a solution to 7W(s) =0, ru=1, (where
u is a vector of ones). These are just like the equations
for finding an equilibrium vector of a @-matrix and
can be solved in a similar manner, see, for example,
Hawkes & Sykes (1990). The right eigenvector, ¢, can
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be found in a similar way, as its transpose satisfies
IWT(s)=0, cTu=1.

Alternatively, a Newton-Raphson method may be
used to iterate simultaneously the root and the right
eigenvector so that, if s,, ¢, are the rth iterates, the next
iteration is given by

Cryl = (UTW~ 1<57> W (s,)e,) = ‘W l(sr) W,(sr)cr}
1= 5 — W )W (s)a) 9)

The left eigenvector can then be found as described
above.

In general, Newton-Raphson procedures either
work very well or they fail. We have found that it
usually works well in this case, but the initial value of s
sometimes needs to be very close to the true value for
it to converge to the desired root.

6. NUMERICAL EXAMPLES WITH MORE
THAN TWO STATES

In this section we study three examples with more
than two states. To consider the effect of varying the
dead-time 7, the standard model in each case uses
equal to 0.2 ms and we also study a good resolution
model with 7=0.05 ms and a poor resolution model
with 7=0.5 ms, keeping all the rate constants fixed.
Again, we use milliseconds as the unit of time
throughout.

Model CHS2. This model, discussed in Colquhoun &
Hawkes (1982), has two open and three shut states.
Two agonist molecules (A) can bind to the shut (R)
conformation, and either singly or doubly occupied
channels may open (R*). The scheme is illustrated
diagrammatically in equation (60) and the matrix of
rate constants (rates per millisecond) is shown parti-
tioned in equation (61).

& (5) lfr
7 (4) /?LR:AR* (1) (60)

The model defined in equations (60) and (61) is
similar to that inferred by Colquhoun & Sakmann
(1985) as a description of suberyldicholine-activated
ion channels in the frog muscle endplate. Low agonist
concentrations were used so the resting state (5) has a
long lifetime (100 ms) and channel activations are
well-separated (by 3789 ms on average, see table 7a).
The channel activations consist predominantly of
several ‘long’ openings (each usually a single sojourn
in state 2, mean life &2 ms, since direct transition from
states 1 to 2 are rare), and these are separated by brief
shuttings which consist mainly of single sojourns in
state 3 (mean life=1/19=53 us, manifested as the
large (739,) component of shut times with a time
constant of 53 ps in table 7a4. There are rare longer
interruptions too (component with time constant
0.485 ms and 0.89%, of area in table 74). A few channel
activations are brief single openings corresponding
mainly to sojourns in state 1 (mean life=1/3.05=
0.328 ms).
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~3.05 0.05 T 0 3 0
0.0006666667 —0.5006666667 . 0.5 0 0

Q=1 o 15 T 19 4 0 (61)
0.015 0 005 —2065 2
0 0 0 0.0l  —0.01

To investigate the distributions expected when brief
events are missed, we begin by finding the asymptotic
densities of observed lifetimes. For the standard model
the exploratory plots of det W (s) against s are shown
in figure 8a,0. We can clearly see the two and three
roots, respectively, for the open and shut cases. These
were found more accurately by the Newton-Raphson
method described in the previous section and the
means and areas for the representation of equation
(57) calculated from equation (58). These are shown
in the top half of table 74, together with similar results
for other values of 7. When there is perfect resolution,
7 =0, the representation as a mixture of exponentials is
exact and the areas ¢; sum to 1. There is no reason for
the sum to be 1 in the general case, but it does turn
out to be close.

The exact probability density for e-open times,
Sr(t), with 1=0.2 ms is shown in figure 8¢ together
with the exponential asymptote and the mixture of
two exponentials obtained by using both roots: the
latter is almost indistinguishable from the exact
density.

Similarly, the distribution of e-shut times with
7=0.2 ms is shown in figure 84 together with asympto-
tic densities making use of two, and three real roots.
With all three exponentials the agreement with the
exact PDF is good after one dead time, but in the first
interval, {=1 to 27, the exponential approximation is
too slow and too small to provide a good fit. The
approximation is derived for large ¢, so this is not
surprising, but the nature of the exact pDF in this first
interval is interesting. From equation (22) it can be
seen that in the first interval the exact PDF is simply a
mixture of £ exponentials, with time constants that are
(minus the reciprocals of) the eigenvalues of @ (the
zero eigenvalue corresponding to a constant term).
This contrasts with the PDF when no events are missed
(t=0), which is a mixture of k# exponentials with
time constants derived from eigenvalues of Qz#. In
this case the fastest eigenvalue of both @ and of Qz 4
are similar, corresponding to time constants of 51.5 s
and 52.6 us respectively (the diagonal element
gs3=—19ms™!, —1/g33=>52.6 ps, dominates both).
Thus the exact ppF shows (the tail of) the fastest
component of shut times quite accurately in this case
despite the fact that the time constant is only about
259, of the dead time.

A summary of percentage errors, comparing the
asymptotic densities with one, two or three compo-
nents against the exact density, over various ranges of
¢t (expressed as multiples of 7: note that these refer to
excess times 7= T—1) is given in the lower half of
table 7a. We see how the accuracy increases by adding
more components. The accuracy is very good indeed
for the open-time distribution and good, except for
small ¢, for the shut-time distribution.
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When we consider different values of 7, we see from
the error summaries in table 74 that the two-compo-
nent asymptote remains a very accurate approxima-
tion to the open-time distribution even for T=0.5 ms.
The pictures of the densities are similar to figure 8¢,
and so have not been reproduced. In the case of shut
times, the three component approximation is quite
good when 7=0.05 ms, being almost indistinguishable
from the exact density, and is therefore not illustrated.
For the poor resolution case with 7=0.5 ms, see figure
8¢, we find that the two-component approximation is
above the exact density for small ¢ so that, to improve
on this, the third component gets a negative area. The
three-component asymptote is, nevertheless, reason-
ably accurate for e-shut times greater than 27 (excess
times greater than T).

Now consider the structure of the e-intervals and
the individual lifetimes of which they are composed.
The results, calculated by the methods of equations
(25-31), are summarized in table 76. We start with
the shut times, which are more interesting. We see
from the entry probabilities with T=0 that most shut
times start in state 3 and never in state 5, and the
overall mean shut time is 993 ms. However, the first
shut interval 7 of an e-interval begins when a shut
time has already been in progress for time 7, shifting
the probabilities towards occupying the longer lived
shut states (4,5) at that time: the distribution of 77 is
modified in a manner related to that expressed in
Hawkes et al. (1990, equation 5.4). E(T}) is increased
in consequence, the more so for larger 7, reaching
3745 ms when 7=0.5 ms. As the average number of
shut times per e-shut time, E(R), is quite small (at
most 1.54 in this example) this is the major effect
which 7 has on the mean excess e-shut time, E(7): it
could be said that the critical dead-time for observing
a shut time is more important than the dead-time for
missing an open time.

It is interesting to note, however, that the mean
duration of subsequent shut times, E(7,), is also
increased, but for quite different reasons. The second
or subsequent shuttings of an e-shut time, where they
exist, follow short openings and cannot start in state 5
but are rather more likely to start in state 4 (by a state
1l to state 4 transition). This also leads to increased
mean shut times; we give here only the second one,
E(T,), and the limiting case of E(7,) for large r
(denoted E(T)). Note that the mean lifetimes start-
ing from a given state (see equation (29)), are shown
at the foot of table 76. The E(7,) are obtained from
weighting these by the appropriate entry probabilities
(see equation (30)).

When considering open times, we see that the entry
probabilities, and hence the means E(7;), are not all
that much affected by the dead-time: most openings
begin by a state 3 to state 2 transition, especially after
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Table 7. Model CH82

(Results concerning excess e-lifetimes, 7= T—1, using various dead-times, 7. The top half of (a) contains the
means and areas of the exponential components of the asymptotic probability densities, as given by equations
(57) and (58). The bottom half of (a) shows the maximum absolute percent error of the asymptotic forms relative
to the exact density, over various ranges of f: each successive asymptote is obtained by adding one extra
component to the previous one. In (4) are the means and entry probabilities for individual lifetimes 73, T3, and
T, for large r (denoted T) of an e-lifetime, together with E(R), E(T), E(Typen) and E( Ty ). The means open
and shut times starting from a given state are also shown. All times (7, means) are in milliseconds.)

(@)

open times shut times
T components 1 2 1 2 3
0 means 2.00 0.328 3789 0.485 0.053
areas 0.928 0.072 0.262 0.008 0.730
0.05 means 3.89 0.328 3952 0.485 0.054
areas 0.884 0.116 0.469 0.013 0.515
0.2 means 8.91 0.329 4387 0.487 0.079
areas 0.841 0.159 0.920 0.018 0.046
0.5 means 9.74 0.331 5039 0.490 0.201
areas 0.922 0.077 0.991 0.011 —0.002
T t value range maximum error (%)
0.05 0-t 61 0.20 100 99.7 1.7
-2T 58 1.4x 104 100 99.4 6.0x 103
21-37 54 3.5x10-8 100 98.6 8.2x10°8
3141 51 2.9%10-9 100 96.8 6.8x10°°
41-51 47 3.4x107° 100 93.0 6.3x10-°
0.2 0-1 84 0.41 100 97 46
21 74 3.5%x10* 99.7 65 3.9
21-37 61 1.0x 10-7 98.9 19 0.107
31-41 47 1.2x10-8 98.1 2.7 6.6x10-*
41-51 33 1.1x10-8 97.1 0.329 7.6 x10-¢
0.5. 0-t 72 1.3 99 35 41
-2t 36 7.8x 104 97 12 0.94
21-317 12 1.4x10°7 93 2.5 0.049
31-47 3.0 2.1x10-° 84 0.50 2.7x103
41-51 0.71 4.6x10-1 65 0.089 1.3x10-*
(b)
open times shut times
E(R) entry probabilities E(R) entry probabilities
E(T) E(T)
T E(Topen) 7 E(T) & b2 E(Taw) 7 E(T) s ¢4 ®s
0 1 1 1.88 0.0741 0.9259 1 1 993 0.9259 0.0741 0
0.05 1.83 1 1.80 0.1187 0.8813 1.04 1 1767 0.6610 0.3154 0.0236
3.47 2 2.00 0.0003 0.9997 1855 2 2119 0.5393 0.4607 0
3.46 o 2.00 0.0001 0.9999 1855 o0 2373 0.4520 0.5480 0
0.2 3.84 1 1.73 0.1627 0.8373 1.22 1 3470 0.0840 0.6663 0.2497
7.54 2 2.00 0.0011 0.9989 4035 2 2583 0.3800 0.6200 0
7.41 o0 2.00 0.0005 0.9995 4035 0 2163 0.5240 0.4760 0
0.5 4.49 1 1.87 0.0803 0.9197 1.54 1 3745 0.0015 0.4046 0.5939
9.01 2 2.00 0.0017 0.9983 4994 2 2432 0.4317 0.5683 0
8.83 0 2.00 0.0012 0.9988 4994 0 1797 0.8499 0.3501 0
Mean open lifetimes starting from state Mean shut lifetimes starting from state
1 2 3 4 5
0.361 2.00 777 3690 3790

Phil. Trans. R. Soc. Lond. B (1992)
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Figure 8. Plot of the determinant of W(s) against s for (a) the open times and () the shut times arising from model
CHB82 with 1=0.2. These enable initial estimates of the two or three (respectively) zeros, i.e. the values of s for which
det W(s)=0. The remaining graphs show exact and asymptotic probability densities of observed lifetimes arising
from model CH82. In each graph the exact density is shown by a solid line. In (¢) is shown the open time density
when 7=0.2; the single exponential asymptote is shown dashed whereas the double exponential asymptote is visually
indistinguishable from the exact result. In (d) is shown the shut time density when 7=0.2, the double exponential
asymptote (dot-dashed) and the treble exponential asymptote (short dashes). In (¢) is shown the shut-time density
when 7=0.5; the successive exponential asymptotes are shown long-dashed, dot-dashed and short dashed,

respectively.

a short shut period. Consequently, the major effect on
increasing E(7) is the concatenation effect of increas-
ing numbers of openings contributing to an e-opening,
with E(R) reaching 4.49 when 1=0.5 ms.

Model CKF. Next consider a model with only one

Phil. Trans. R. Soc. Lond. B (1992)

open state and two shut states which was considered
by Castillo & Katz (1957) and studied in connection
with noise analysis by Colquhoun & Hawkes (1977)
(where it was referred to as the ‘KM scheme with full
agonist’). The model, which may be thought of as a
simplification of the previous model in which only one
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agonist molecule can bind to the receptor, is illus-
trated in equation (62) and its transition rate matrix is
given in equation (63).

Open times with missed events

The mean lives of the two shut states are 0.034 ms
and 38 ms, one short and one very long compared
with the dead-time. Consequently, the entry probabi-
lities for the first shut time 7 of an e-shut time vary

R == AR == AR* . .

- - (62) considerably with the value of 7 (see table 84), and
state: F3) @) 2 therefore have a big effect on the mean duration
E(T), as was the case in the previous example. From

-1 1 0 . . ..
.................... the @-matrix we see that shut times normally begin in
Q=119 : —29 10 (63) state 2 and the mean shut lifetime starting from that
0 0.026 —0.026 state is 20.3 ms (see table 86 with 1=0). However, a

Table 8. Model CKF

(Results on excess e-lifetimes, 7'= 7 — 1, using various dead-times, 7. The top half of (a) contains the means and
areas of the exponential components of the asymptotic probability densities, see equations (57) and (58). Below
are the maximum absolute percent errors of the asymptotic forms relative to the exact density, over various
ranges of ¢: successive asymptotes are obtained by adding one more component to the previous one. In (b) are the
means E(R), E(T}) and E(T) and entry probabilities for the start of an e-interval. Note that, for > 1, E(7}) and

the probabilities are the same as for the case t=0. All times are in milliseconds.)

(@)

open times shut times
T components 1 1 2
0 means 1 58.7 0.034
areas 1 0.345 0.655
0.05 means 2.03 59.8 0.037
areas 0.99993 0.697 0.297
0.2 means 2.95 63.2 0.077
areas 0.99975 0.995 0.003
0.5 means 2.99 71.9 0.229
areas 0.99970 1.001 —0.002
T ¢t value range maximum error (%)
0.05 0-t 0.97 100 5.6
21 9.8x 10~ 99 0.071
21-37 3.6x1077 98 3.0x 104
31-41 6.3x 101 92 24 x10°7
41-51 2.4x10-1 75 1.5x10-°
0.2 0-1 2.2 89 65
21 4.7 x 104 15 1.8
21-31 3.3x10"8 1.3 0.020
3141 58x10-13 0.095 4.3x%x 104
41-51 2.0x10-1 7.0x10-3 8.7x19-6
0.5 0-t 2.3 35 30
721 4,7x10-5 5.6 0.420
21-31 9.7x 1010 0.61 0.012
3t-41 1.9x10-1 0.070 4.4 x10-*
47-57 1.9x10-13 8.0x 1073 1.2x10-5
(6)
shut times
open times entry probabilities
v E(R) E(TY) E(T) E(R) E(TY) E(T) ¢s $s
0 1 1 1 1 20.3 20.3 1 0
0.05 2.01 1 2.03 1.05 40.6 41.7 0.471 0.529
0.2 2.89 1 2.95 1.22 58.4 62.9 0.010 0.990
0.5 2.92 1 2.99 1.65 71.9 72.0 0.001 0.999
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Figure 9. Exact and asymptotic probability densities of observed shut times arising from model CKF. In each graph
the exact density is shown by a solid line. In (a) is shown the density of observed shut times, f7(¢), when t=0.2. The
sharp peak at the start is investigated in (#) by plotting the density of excess shut times, f7(¢), for ¢ in the range 0,37).
In (¢) is shown the density of full e-shut times, f7(f) when 7= 0.05; the two asymptotes are close to the horizontal axis
and the exact curve, respectively. In (d) is shown the density of full e-shut times, f7(¢), when t=0.5. In each of (4),
(¢) and (d) the single exponential asymptote is shown dashed whereas the double exponential asymptote is shown

dot-dashed.

shut time starting in state 3 takes 1/0.026 =38.5 ms on
average (the mean lifetime of state 3) to reach state 2
and then a further 20.3 ms on average before the shut
time terminates, so the average time starting from
state 3 is 58.8 ms. Shifting the entry probabilities
towards state 3, therefore, clearly has an effect. As
E(R) remains quite small, this is clearly the major
contributor to shut time, the
remainder being contributed by subsequent shut times
and short openings which make up the e-shut time. As
there is only one open state, the remaining shut times
all begin with a state 1 to state 2 transition and so, for
r>1, the 7, all have the same distribution as in the
case T=0.

The above effect does not occur if there is only one
state. The mean of any open lifetime (including
E(T))) is therefore 1 ms, which is quite long, even
compared with the poor resolution dead-time, and the
duration of the e-open time is entirely dictated by the
concatenation effect.

Turning now to the distribution of lifetimes, we
note that the distribution of excess e-open times is very
nearly exponential, as shown by the areas (which are
very close to 1) and the percentage errors given in
table 84, and not worth graphing.

the mean excess
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The exact density for e-shut times from the stand-
ard model (1=0.2 ms) is shown in figure 9a. It has a
very sharp peak near 7. Figure 95 examines this peak
in more detail, plotting now the density of excess
times, f7(¢): the single exponential asymptote natur-
ally misses the peak completely; adding the second
component copes with the tail of it but is well short at
the origin. This sharp peak is, in fact, a quite accurate
representation of the fastest shut time component, for
the reasons discussed above for the CH82 model (with
7=0.2 ms). In this case the fastest eigenvalue of Q
corresponds to 33.7 ps, and the fastest eigenvalue of
@z corresponds to 34.5 ps (the diagonal element
go=—29ms™!, —1/g=234.5ps, dominates both);
again the exact PDF represents (the tail of) the fastest
shut time component quite accurately despite the fact
that its time constant is only about 169, of the dead
time.

In the good resolution case, figure 9¢, adding the
second component gives a good fit to nearly the whole
distribution. The poor resolution case is very interest-
ing. Figure 94 shows the density of e-shut times,
showing a small depression, instead of a peak, at the
beginning: the second component, which has a nega-
tive area, makes a reasonable attempt to follow it.
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Model CB (channel block model). Our final model is
obtained by adding one extra shut state to the
previous model, by supposing that a blocking mole-
cule, B, can enter and block the open channel. The
model is illustrated in equation (64) and the matrix of
transition rates is given in equation (65). Again the
standard model assumes 7=0.2 ms. The model is
similar to one discussed in Colquhoun & Hawkes
(1990). The mean open time is 0.5 ms, the mean shut
time, at 9.4 ms, is quite long but it includes a short
mean blocking time of 0.02 ms. The other parameters
are chosen so that the channel is open about 59, of the
time.

Open times with missed events

~2 1 1 0

_| 1:-101 0 100 65

=l o —s0 o | @
0: 56 0 ~5.6

For shut times, the variation in E(7}) with 7, shown
in table 95, is quite small (for 7#0), most e-shut times
starting in state 4, so that the increase of E(7') with ©
is mainly due to the concatenation effect of increasing
E(R). The mean duration of all shut times 7,, r> 1, is
9.4 ms (because there is only one open state from
which the set of shut states can be entered). On the
other hand, if an open time is interrupted by a short

==AR ==AR*==AR*B (64) shut time then it is almost certainly a block of a brief
state: F4) F(2) (1) F(3) sojourn in state 2 (although isolated sojourns in 2 are
Table 9. Model CB
(Description as for table 8.)
open times shut times
T components 1 1 2 3
0 means 0.5 19.0 0.02 9.4x10-3
areas 1 0.496 0.5 0.004
0.05 means 0.948 20.0 0.024 9.4x10-3
areas 0.9998 0.927 0.065 —0.0001
0.2 means 1.04 23.7 0.077 9.5x 103
areas 0.9995 1.001 —0.001 —4.2x10-1
0.5 means 1.06 35.5 0.237 —
areas 0.998 1.003 —0.003 —
T ¢t value range maximum error (%)
0.05 0-1 1.5 99 21 21
T-21 1.4x10-3 88 1.1 1.1
2t-37 49x10-7 47 2.8x10-3 2.7x10-3
3t-41 8.7x10-1 9.9 44x10-° 48x10-5
41-57 9.6x 10-1 1.3 6.0x10-8 4.1x10-8
0.2 (4 2.2 17 30 30
-2t 1.3x 104 3.0 0.23 0.23
21-31 5.5x 10-° 0.21 4.7x10-3 4.7x10-3
347 3.7x10-12 0.016 1.0x 10-* 1.0x10-*
41-51 3.4x10-12 1.2x10-3 2.2x10-8 2.2x10-8
0.5 0-t 29 46 29 —
21 1.5x10-3 6.4 0.39 —
21-37 84x10-7 0.76 0.013 —
3141 2.4x10-10 0.094 2.8x10-* —
41-51 3.4x10-10 0.011 3.7x10-® —
shut times
open times entry probabilities
T E(R) E(T) E(T) E(R) E(Ty) E(T) ¢2 ®s P4
0 1 0.5 0.5 1 9.4 9.4 0.5 0.5 0
0.05 1.87 0.5 0.947 1.11 17.6 18.6 0.053 0.077 0.871
0.2 2.04 0.5 1.041 1.49 19.0 23.7 0.053 4.6 x10-5 0.947
0.5 2.07 0.5 1.063 2.72 19.0 35.6 0.053 1.4x10-1 0.947

Phil. Trans. R. Soc. Lond. B (1992)



Open times with missed events

00574

=]
(=)
X

=]
S
(8]

0.02

0.01

probability density (f(¢))

time (f) / ms

probability density (f(¢))

0.25
5t

time (¢) / ms

A. G. Hawkes and others 401

0.05 ()
2 004 f
S 2
2 re
z 003/
Q
o
>
= 002
2
3]
e}
g o001
0 0.2 0.4 1
T 2t St
excess time (¢) / ms
0.03
= 0025
g
2z 002
za !
1) N
< 0.015 g
o
2 001
e}
2
2. 0.005
0 05 1 2.5 5

T 2t 5t 10t
time (f) / ms

Figure 10. Exact and asymptotic probability densities of observed shut times arising from model CB. In each graph
the exact density is shown by a solid line. In (@) is shown the density of observed shut times, f7(f), when 7=0.2. The
dip at the start is investigated in (4) by plotting the density of excess shut times, f7(f), for ¢ in the range (0,57). In (¢)
and (d) are shown the densities of full e-shut times, f7(¢), when 1=0.05 and 0.5, respectively. In each of (4), (¢) and
(d) the single exponential asymptote is shown dashed whereas the double exponential asymptote is shown dot-

dashed.

rare because once in 2 it is much more likely that the
next transition is to 4, rather than re-opening to 1).
These shut times are so short that most of them will be
missed even at T=0.05 ms, so making the resolution
worse than this does not extend the mean e-open time
much more. The PDF of e-open times is nearly
exponential (areas close to 1 in table 94) and not
worth graphing.

The density of e-shut times shown in figure 10a has
a dip near 7 like the last example. This dip is shown in
more detail in figure 106 where the excess shut time
density, f7(f) together with the first and second
asymptotic approximations, is plotted. Again, the
second component has a negative area and succeeds in
following the first part of the dip. The area of the third
component is so small that it makes virtually no
difference to the result.

In the case of good resolution the density of e-shut
times, f7(f), shown in figure 10c, appears more
regular. The third component has little effect here
either. The situation with poor resolution, shown in
figure 104, is similar to that for the standard model.
This time, however, the third component was not
found because the calculation of det W(s) for very
negative s took us outside the range of accuracy
obtainable with our software (Dyalog APL on an
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IBMP70 with 80386 chip); we imagine it would have
an area even smaller in magnitude than the 10~13
found when 7=0.2 ms (see table 9a). The ineffective-
ness of, or in the last case failure to find, the third
component is presumably a consequence of the shut-
time distribution having a very short (about 0.01 ms)
component with a small area, even with perfect
resolution (t=0 in table 9a).

7. COMPARISON OF ROUGH CORRECTIONS
WITH THE EXACT RESULTS

The results given above provide a way to calculate the
exact distributions in the presence of missed events, to
a very close approximation. However the use of these
results in practice is still limited by two main prob-
lems: (i) the results are for one channel, but it is often
not known with any certainty how many channels are
contributing to the recording; (ii) to use the results it
is necessary (as with all other approximations; see
Introduction) to specify a mechanism for the channel
operation, which may not always be practicable
(especially as the mechanism must include any
desensitized states that may be present). These prob-
lems should be somewhat ameliorated when we
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extend the results to the analysis of bursts of openings
(in the manner of Colquhoun & Hawkes (1982)).

Some much cruder methods for correction for
missed events, which do not encounter either of these
difficulties, have been proposed (e.g. Colquhoun &
Sakmann 1985; Ogden & Colquhoun 1985). The
results in this paper provide an opportunity to test
these methods.

If there were only one open-time and one shut-time
component (whichisvirtually never true) then the mean
open and shut times could be corrected as described
by Colquhoun & Sigworth (1983), a method that was
derived from the results presented here. In practical
cases it is possible to make corrections without postu-
lating a mechanism only if (virtually) all openings are
long enough to be resolved, and only short shut
periods are missed (or vice versa). In this case the
openings will appear too long (because some shuttings
are missed), but the shut time distribution will be
correct apart from the fact that observations below
t=1 are missing. For example the CH82 model has
true (t=0) shut-time time constants of 3789 ms,
0.485ms and 53 ps, and with a resolution of
7=0.05 ms these are little changed (3952 ms, 0.485 ms
and 54 ps; see table 7a). At first sight the areas of
these components seem to be quite different when
7=0.05 ms, but this is largely because in this case the
areas sum (almost) to unity over the range {=1 to o0,
whereas when 7 =0 the areas sum to unity over =0 to
00. If experimental results with 1=0.05 were fitted
(above t=0.05 or 0.1) with three exponential compo-
nents (as discussed at the beginning of § 4), the areas
would be scaled to sum to 1 over =0 to co. The result
of'the fitting would be similar to thatshownin table 7afor
7=0.05 except that the areas given there must be
renormalized by multiplying each area by exp(t/ui),
(where the u; are the time constants of the shut time
distribution), and then rescaled to sum to 1. When
this is done the areas for T=0.05 become 0.263, 0.008,
0.729, very similar to those for t=0 (0.262, 0.008,
0.730). This shows that fitting shut time data should
give a good approximation to the true shut time
distribution if few openings are missed (this will, of
course, not be the case with the open time distribution
because many shuttings are missed in this example).
This shut time distribution will be written here as

S(8) = Yai(1/p)exp(—t/p.). (66)

(a) Case where there is a single component open-
time distribution and only shuttings are missed

The proportion of shut times that are shorter than
is

P(T<1) = Jf(t)dt =1 - Yaexp( - 1/p), (67)
0
and the mean length of such gaps is

jtf(t)dl

fe = P(T <)
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_ Zai{f"’i — (i + 7 )exp( — t/p)}
1 - Zai exp( — T/w)
Similarly the mean length of gaps longer than T, is

given by

0

fﬁ(ﬁdt

(68)

o 24 exp(—T/u;)

S T R vy (%9)
where "
P(T> 1) = j ) dt = Yaexp( — tju). (70)

The mean number of openings per e-opening, E(R), is

E(R) ~ 1/}, exp(—1/w), (71)
and the mean total shut time per e-opening is
KTS = (E(R> - I)ng' (72)

If the fitted length of an e-opening is denoted o,
the apparent mean open time (adjusted by subtract-
ing 7 to allow for observing only openings longer than
7), the mean total open time per e-opening, E(7,pcn)
can be found as

E(Topen) = Meo — HTS, (73)
so the corrected mean open time is
MmO = E<Topen)/E(R>' (74)

These arguments can be applied to models BM2
and CKF. For model BM2 the mean excess e-open
and e-shut times were 2.79 ms and 0.116 ms respec-
tively and these should be close to what would be
found by fitting data. These values give 2.37 openings
per e-opening (from equation (71)), and a corrected
mean open time of 1.15 ms (from equation (74)). The
true values are 2.72 ms and 1.0 ms respectively; the
correction would be worthwhile in practice, though
the 169, error in the mean shut time gives rise to a
similar error in the results.

For model CKF, with 7=0.05 ms, the fitted open
time would be about 2.03 ms (table 8), and the fitted
shut time have time constants close to 59.8 ms and
37 ps, with areas (after renormalization of the values
in table 8 as described above) of 0.380, 0.620 respec-
tively (not too far from the true, t=0, values of 0.345,
0.655). These values give 1.85 openings per e-opening
(from equation (71)), and a corrected mean open time
of 1.09 ms (from equation (74)). The true values are
2.01 ms (table 84) and 1.0 ms respectively.

In these two examples a wuseful correction is
obtained when the resolution is good, but if the
resolution is much worse than this the results become
inadequate.

(b) Case where there is a two-component open-time
distribution, only shuttings are missed, and ‘short
openings’ have no gaps

When the open-time distribution has two compo-
nents, as in the CH82 model, there is no way of
telling, when the mechanism is unspecified, whether
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missed shuttings are missed from the ‘long openings’
or the ‘short openings’. A rough correction can still be
made if we are willing to assume that the ‘short
openings’ in fact contain no gaps, so there are none to
be missed and ‘short e-openings’ are therefore the
same as true ‘short openings’. A similar argument was
used by Colquhoun & Sakmann (1985).

It is, of course, quite improper, in general, to refer
to the components of the open time distribution as
‘short openings’ and ‘long openings’, as though they
were physically distinct entities. Nevertheless, under
some circumstances, this nomenclature, although not
precise, does make physical and mathematical sense
(see, for example, Colquhoun & Hawkes 1982; Colqu-
houn & Sakmann 1985).

Say N,=total number of openings, and N.=total
number of e-openings in the channel record, so

N,/N. = E(R) (75)

from equation (71). Define also a; and ar as the areas of
the slow and fast components of the distribution of
(true) openings, and as, af similarly for the distribution
of e-openings (both over 0 to c0). Suppose too, ex
hypothesi, that the number and duration of ‘short
openings’ is the same as the number and duration of
‘short e-openings’ so Nyar = Nat. Thus

E(R) ~ N0<af+ as) ~ Nea’f+ Noss
T Nelat+a) N

SO

a,~ 1 — a;y aexp( — T/w). (76)

This gives an estimate of a, and hence ar=1—a,, for
the ‘true open times’. The corrected mean open times
can be estimated as follows. The ‘short open times’
have mean p; as for the e-open times (ex hypothesi). The
corrected mean length of a ‘long opening’, ui,, can be
found thus

Mo =

length of long e-opening — shut time in long e-opening

(77)

number of openings per long e-opening

The number of openings per long e-opening, E(R))
say, is

E(R) = number of openings in long e-openings
v number of long e-openings ’

total number of openings —
__(number of openings in short e-openings)

= T >

number of long e-openings

_ total number of openings — number of short e-openings
h number of long e-openings ’
N, — Nt E(R) — d'¢

’ ’
NCaS a S

(78)

The shut time per long e-opening is, since all missed
gaps are, ex hypothesi, missed from long openings, just
the number of (missed) gaps per long e-opening
multiplied by the mean length of a missed gap from
equation (68), namely

(E(R1) = Dpg (79)
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This completes everything that is needed for evalua-
tion of equation (77).

These results can be exemplified by the CHS82
model. The renormalization of the shut time distribu-
tion in this case was discussed above (before equation
(66)), and it was clear that fitting shut time data
would give a good estimate of the true time distribu-
tion in the case where 1=0.05 ms. In this case the
open time distribution has two components and so it
must be similarly renormalized; this converts the areas
of 0.884 and 0.116 (for t=0.05 ms in table 7a4) to
0.869 and 0.131 respectively; these are taken as a4, af,
and the time constant for the latter, 3.89 ms, is taken
as the mean length of a ‘long e-opening’ for equation
(77). The overall number of openings per e-opening is
estimated (from equation (71)) to be 1.79 (true value
1.83, from table 754), and the overall corrected mean
open time is 1.91 ms (true value 1.88 ms). The mean
number of openings per ‘long e-opening’, from equa-
tion (78), comes to 1.91. The corrected open-time
distribution gives time constants of 2.03 ms (from
equation (77)), and 0.328 ms (as observed, ex hypo-
thest), with areas (a;, and ag of 0.927 and 0.073,
respectively. These are quite close to the true (t=0)
open-time distribution (time constants 2.00 ms and
0.328 ms, with areas 0.928 and 0.072; table 7a),
despite the grossness of the assumptions that were
made.

8. DISCUSSION

We have found that computation of the exact proba-
bility density of observed open (or shut) times affected
by the omission of short intervals, obtained in Hawkes
et al. (1990), is generally quite feasible, both in time
and accuracy, for up to about 20 times the dead-time.
However, it gets steadily more complicated and time
consuming as ¢ increases and ultimately the series
becomes numerically unstable. In this paper we have
studied several examples which show that the asymp-
totic form of f7(¢) for excess open or closed lifetimes,
consisting of a linear combination of exponentials, is
simple and very accurate for ¢ greater than the dead-
time T or at most 2t (i.e. ¢> 27, or at most, 37 for the
full observed lifetimes, 7= 7'+ 1), and sometimes for
smaller ¢. If the processes are slow compared with the
dead-time, the asymptotic form may be a very good
approximation to the exact density for all ¢.

Thus we have the best of both worlds: a simple
exact density for small ¢, and a relatively simple and
very accurate asymptote for larger . One may simply
change over from one to the other when satisfied that
the asymptotic approximation has come close enough.
This is true even in the two-state case, where we found
it is possible to improve the single (in that case)
exponential asymptote by adding damped oscillations.
These complicate the issue only to improve the
approximation over a range of ¢ where the exact result
is easy to calculate anyway: we think it is better to use
only the exponential terms.

With more than one open or shut state we have
found that, if there are states with mean lifetimes
which are short compared to the dead-time, the
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distribution of excess lifetimes can have depressions
near the origin and, in consequence, some exponential
components in the asymptotic form have negative
areas. If there are mean lifetimes which are very short,
not all of the £, components may be effective.

The mean observed shut time, say, is naturally
increased by concatenation if short open times in the
middle are missed. However, if the mean lives of the
various shut states differ widely, the increase may also
be partly due to changes in the initial probabilities of
the states in which an e-shut period may begin.

We have discussed this in terms of the distribution
of observed lifetimes because it is of practical interest
and simple to look at. What we have really done,
however, is to find a relatively simple way of comput-
ing “/R(t), which is central to computing many things.
Using this, for example, it is feasible to compute the
likelihood for the complete observed process, as dis-
cussed in section six of Hawkes et al. (1990). We have
used partly graphical methods to find the roots but the
process can be more-or-less completely automated,
thus facilitating the exploration of the likelihood
surface. This has recently been implemented, and the
results will be presented elsewhere.
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