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ABSTRACT The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov
process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein
or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal
conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the
raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced
bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed
events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the esti-
mation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our
knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain
knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to
gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However,
Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational
complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method
that we called ‘‘BICME’’, which performs Bayesian inference in models of realistic complexity. The method is demonstrated
on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty
can be more accurately characterized compared with maximum-likelihood methods. Our code for performing inference in these
ion channel models is publicly available.
INTRODUCTION
Ligand gated ion-channels are transmembrane proteins that
enable fast cell-to-cell communication, which is crucial for
the functioning of the nervous system and for the control of
skeletal muscle. Conformational changes in the protein are
induced by the binding of an agonist, such as a neurotrans-
mitter, to the extracellular domain of the protein. These
conformational changes lead to the opening of the gate of
the channel pore within the protein, enabling the flow of
ions down their electrochemical gradient. The resulting all-
or-nothing current has an amplitude typically in the pA range
at physiological membrane potential and ionic concentra-
tions and can be recorded by patch-clamp techniques (1).

The conformational changes that occur during the gating
process cannot be observed directly and therefore must be
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inferred from such recordings. These single-channel data
are used to fit and assess mechanistic Markov models for
description of the binding events and conformational
changes that occur during channel activation. Such mecha-
nistic mathematical models consist of components that
may be directly interpreted as part of the system being
modeled, allowing investigation of the underlying physical
process.

Ion channels are unique among proteins in allowing the
prolonged recording of single molecule activity at high tem-
poral resolution. This in principle allows the fitting of
models that are unusually detailed and relatively close to
the physical reality of activation. For instance, in a ligand-
gated ion channel, this reaction consists of the binding of
several neurotransmitter molecules followed by conforma-
tional changes that eventually result in the channel opening.
Fitting an appropriately parameterized model to estimate
the rate constants for the different transitions allows us to
establish the simplest model that adequately describes the
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observations and thus to probe the energy landscape of the
channel. In turn, this is useful to compare with structural
information and with molecular dynamics simulations of
protein dynamics.

Single-channel records show only whether the channel is
open or closed and realistic channel activation requires
several closed and several open states. Ion-channel kinetics
may be described mathematically using aggregated Markov
models, because it is not possible to directly observe the
conformational state of the protein, and their memoryless
nature appears to match observed channel behavior. There
are obvious difficulties, however. While temporal resolution
can be very good for single-channel recordings, 10–30 ms at
best, it still is not infinite, and this prevents the identification
of shorter dwells of the channel in the open or closed states.
These short dwells commonly occur in most ion-channels
and, importantly, result in missing data, which we must
also account for in our modeling approach.

Recordings are usually idealized, that is, converted from
digitized records to lists of intervals using various methods,
such as time-course fitting, threshold crossing, and hidden
Markov models to convert the recording to a putative
sequence of open and closed intervals (2). Models of
increasing complexity are fitted to these idealized data until
a reasonable description of the channel behavior is obtained.
Maximum-likelihood (ML) methods have been to date the
most common inferential framework for estimating model
parameters from single-channel data. This approach has
been found to be useful in examining the activation of chan-
nels in the nicotinic superfamily (3–7). The main limitation
of the ML approach, however, is that it is not straightfor-
ward to check the parameter nonidentifiability and the
impact of parameter uncertainty. Parameter nonidentifiabil-
ity can occur in two scenarios as outlined in Milescu et al.
(8). First, there may exist a continuum of parameter values
at the ML point such that estimated values of the model
parameters cannot be constrained within a finite range.
Second, there may exist multiple well constrained but
discrete solutions that describe the observed data reasonably
well. The first case, which we examine in this article, can be
a particular problem for ion-channel models where the un-
derlying structure of the physical process is not directly
observable. The model may consequently be overparameter-
ized and there may be great uncertainty in the parameter
estimates. The ability to determine parameter identifiability
and the impact of parameter uncertainty is vital for allowing
physiologically meaningful conclusions to be drawn from
a hypothesized ion-channel model, for example, when
comparing the action of different channel agonists on a re-
ceptor, or when assessing the physical impact of mutations
on channel behavior. Theoretical work has explored the
maximum number of parameters that can be fitted to sin-
gle-channel recordings (9) and investigated nonuniqueness
of models (10), but these techniques are difficult to apply
when fitting models to real experimental data. Assessing
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the impact of parameter uncertainty on model predictions
also remains a challenging problem.

Our group used the approach pioneered by Colquhoun
et al. (11,12) to examine parameter identifiability by assess-
ing standard errors and correlations derived using the empir-
ical covariance matrix calculated at the ML estimate. Thus
we verified the properties of the ML estimators for our
main results on the nicotinic and glycine channel by exten-
sive simulations (5,12) showing our approach can reliably
detect rate constants as fast as 130,000 s�1 for glycine
channels (5). This technique has also robustly revealed
intermediate conformational states in the nicotinic and
glycine channels (7) and in the ELIC receptor in prokaryotes
(13). Despite these successes, there are limitations to the use
of maximum-likelihood inference. In particular, checking
the validity of model parameter estimates by fitting simula-
tions remains an ad hoc laborious process.

There is increasing interest in Bayesian approaches in
biophysics (14,15) and in particular in single-channel anal-
ysis, e.g., Rosales (16), Calderhead et al. (17), and Siek-
mann et al. (18). In Bayesian methods, rate parameters are
treated as random variables with a known prior probability
distribution. This allows the assessment of parameter iden-
tifiability through the calculation of their posterior probabil-
ity distributions. The uncertainty in these distributions may
therefore be directly propagated through before examine un-
certainty in the predictions of the model. Bayesian methods
are more computationally expensive than ML estimation
when the posterior probability distribution is not known
analytically and so Markov chain Monte Carlo (MCMC)
sampling schemes are required to facilitate Bayesian infer-
ence in such models. MCMC schemes are called ‘‘sam-
plers’’ as they derive estimates of this density by defining
probabilistic Markov processes that draw samples from
such probability distributions.

However, to our knowledge, there is currently no
Bayesian approach for ion-channel models that exactly
corrects the model likelihood for the two important, inevi-
table technical constraints of the experimental data, namely
the limited temporal resolution in the experimental record
and the lack of knowledge about the number of channels
in the experimental patch. This article addresses this short-
fall thus:

1. We propose a practical approach specially tailored
for performing highly efficient Bayesian inference in
ion-channel models using multiplicative Metropolis-
within-Gibbs (MWG) and adaptive MCMC sampling in
a package called BICME, available at https://github.
com/miepstei/bicme.

2. We examine how well our approach assesses parameter
identifiability and parameter uncertainty using the ob-
tained posterior distribution. We examine how uncer-
tainty in parameter values affects the uncertainty in
model predictions and we apply our approach to both

https://github.com/miepstei/bicme
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synthetic and real experimental data for muscle nicotinic
acetylcholine receptors.

3. We correct the model likelihood for missed events and
compare the results of MCMC methods with those
from existing ML and Bayesian methods (12,19).
MATERIALS AND METHODS

Ion-channel stochastic framework

The analysis aims to infer a continuous-time Markov process from a

discretely sampled signal that has been idealized by a time-course fitting

procedure (2). Idealization deconvolves the channel signal from the filtered

output. Within a continuous time framework we seek an expression for the

probability of observing an open or shut interval of length t in the experi-

mental recording. To calculate the likelihood, we need the probability den-

sity of the length of time for which the channel appears to be open (although

it may contain missed brief shuttings) or shut. Using the notation of Colqu-

houn and Hawkes (20), we outline the derivation for the required probabil-

ity as follows. Consider a continuous time finite-state Markov process S(t),

t > 0, such that S(t) ¼ i denotes that the process is in state i at time t. The

state space, I, of this process represents the conformational states of the pro-

posed mechanism. The possible transitions between states in this process

are encoded and parameterized with a corresponding generator matrix Q,

which contain the rates of transition between the conformational states of

the mechanism. Each state in I is either open (set A), or closed (set F).

We begin by assuming that there is perfect resolution in the record. From

Colquhoun and Hawkes (20), theQmatrix is partitioned into conformations

that produce one of two conductance levels, such that partition QAA repre-

sents the transition rates between states that that are open and QAF repre-

sents the rates of transitions from open to shut states. Partitions QFF and

QFA are denoted similarly for transitions within shut states and from shut

states to open states, respectively. The initial goal is to derive a probability

for observing an open (or closed) interval of length t given that we cannot

directly observe transitions within each conductance class A or F. We can

subsequently derive a likelihood for the idealized recording from the prob-

abilities of these individual sojourns (11). Conditional on the process start-

ing in an open state i˛A, the individual probabilities of the process

remaining within the set of open states A for a sojourn t, and instantaneously

transitioning to a shut state j˛F, are given by the elements of the matrix

QAF(t) in Eq. 1 (20):

GAFðtÞ ¼ expðQAAtÞQAF: (1)

The overall probability of observing an opening of length t, where the pro-

cess starts in any one of the open states and finishes in any one of the closed

states, is given as

fAðtÞ ¼ fAGAFðtÞuF; (2)

where the initial vector fA denotes the probabilities of a sojourn starting in

any one of the hidden open states of the process, and the final column vector

uF is a column of ones that sums up the probabilities of finishing in each

shut state. The analogous probabilities for a closed sojourn are obtained

by switching the partition labels A and F.
Accounting for missed events

Single-channel recordings have finite time resolution, and channel events

shorter than the resolution time are not observed in the idealized record.

With the continuous time framework outlined above, these unobserved tran-

sitions need to be accounted for within the likelihood, and we used the exact

missed-events correction of Hawkes et al. (21,22). The probability of
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observing an open interval of length t, in the presence of missed events,

can be calculated by noting that t can be broken into three parts given the

recording resolution time t. The first part is the open interval of length

t � t, which may contain zero, one, or many shuttings of length <t that

are undetected. This first element,RAðt � tÞ, is known as the survivor func-
tion as it represents transitions from open states to closed states over a time

t � t, during which shut intervals of duration <t may occur but are not

detected. The second component is the instantaneous transition from the

open to the shut states,QAF. The third component is a shut interval of length

t that must occur such that the open interval is brought to a close, which is

simply expðQFFtÞ. We denote these probabilities analogously to GAFðtÞ as
Ge

AFðtÞ (11):

Ge
AFðtÞ ¼ RAðt � tÞQAFexpðQFFtÞ: (3)

Calculating the correction for missed events (Eq. 3) is much more involved

than the ideal case (Eq. 1) as it requires calculating the convolution of open

intervals with an unknown number of short shut intervals, each less than t in

length, over the period t � t. The required convolution can be expressed as

the following Laplace transform (11):

R�
AðsÞ ¼ �

I�G�
AFðsÞS�

FFðsÞG�
FAðsÞ

��1ðsI�QAAÞ�1
; (4)

where G�
AFðsÞ is the Laplace transform of the GAFðtÞ matrix defined in

Eq. 1, and S�FFðsÞ ¼ ðI� expð�ðsI�QFFÞtÞÞ represents the Laplace trans-
form of a short sojourn in the shut states. A corresponding transform for

observed shut intervals, R�
FðsÞ, is found again by reversing the partitioning

labels.

Although the Laplace transform in Eq. 4 is intuitively simple to under-

stand, it must be inverted to provide expressions for probability densities

of open and closed sojourns as a function of time. Fortunately, an exact

inversion of the transform in Eq. 4 was found by Hawkes et al. (21) in

the form of a piecewise solution in multiples of the resolution time, such

that a different solution is obtained for t < t%2t, 2t < t%3t, and so on.

The solution relies on evaluating a matrix polynomial of increasing order

based on multiples of the resolution time, t. While this calculation becomes

numerically unstable for large t, we can employ an asymptotic form of the

solution (found by Hawkes et al. (22)), which is accurate for periods of

t > 3t (11). Calculating the asymptotic solution in part relies on a numerical

root-finding procedure that adds to the computational burden of evaluating

the corrected likelihood.
Accounting for the number of channels in the
patch

In general it is not known how many channels are present in the patch from

which we are recording. Counting the number of channels simultaneously

open provides only a minimum estimate. Our analysis therefore requires

that records be broken up into stretches where it can be assumed almost

certainly that the gating of a single-channel molecule is being observed,

because the gating of multiple channels would be detectable. These

stretches of open and shut times will be referred to as ‘‘groups’’. At low con-

centrations, channel openings occur in groups termed as ‘‘bursts’’, during

which it is possible to assume that only a single channel is operating,

because multiple channel openings during this interval would almost surely

result in multiple conductance levels observable in the record. Bursts are

separated by long shut times that are the expression of the time taken for

the channel to rebind agonist and contain information on the binding steps

in the mechanism. The record can be broken up into groups by choosing a

time interval value, tcrit, on the basis of the dependence of the shut time dis-

tribution on the agonist concentration. Shut intervals longer than tcrit are

deemed to separate the record into bursts. Effectively, the long shuttings

can be only shortened by the presence of more than one channel in the

patch. As a result, the analysis must take into account the fact that the
26
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real shut sojourn before the first opening of the burst is equal to or longer

than tcrit. This is done by employing corrected initial vectors, known as

‘‘CHS vectors’’ (11), denoted fchs
A . Their use has been shown to increase

the precision of estimates of rate constants from low-concentration records

(12). In contrast, a feature of channel activity at high concentrations is the

presence of channel desensitization; long stretches of channel activity are

separated by desensitized shuttings where there is no observed opening.

Given that desensitized states are not typically incorporated in the model,

these shuttings are excised from the record and are not used for fitting

(12). The analysis uses the groups (clusters) of openings separated by the

desensitized gaps. The open probability in the clusters is high enough to

be sure that only a single molecule is active. In this instance, equilibrium

vectors denoted f
eq
A are used to provide the probability of starting in any

open state at the start of the group.

Accounting for an unknown number of channels in the patch requires an

alteration to the likelihood calculation. At a given concentration of agonist,

½xi�, time interval, tcrit, and resolution time, t, the log-likelihood of the series

of bursts or clusters may be defined as the sum of the log probabilities of

N individual groups, each of varying length mj , observed in the record.

The initial vector, fA is either the CHS vector fchs
A or the equilibrium vector

f
eq
A , depending on the agonist concentration in the experiments, as outlined

above:

Lðy jQ; tcrit;i; ti; ½xi�Þ ¼
XN
j¼ 1

log
�
fAG

e
AF

�
t1j
�

� Ge
FA

�
t2j
�
.Ge

AF

�
tmj

�
uF

�
:

(5)

Equation 5 denotes the calculation of the corresponding log-likelihood over

a series of recordings at different agonist concentrations, which may simi-

larly be defined as the sum of the log-likelihood at each concentration. The

code for this likelihood calculation is publicly available at https://github.

com/DCPROGS/HJCFIT.
An introduction to Bayesian inference and MCMC
sampling

Unknown parameters in the model are specified as random variables in the

Bayesian framework (for further discussion, see Supporting Materials and

Methods S1 and S2 in the Supporting Material). Bayes theorem for contin-

uous variables can be stated as per Eq. 6 below:

pðq j yÞ ¼ pðy j qÞpðqÞ
pðyÞ ¼ pðy j qÞpðqÞR

pðy j qÞpðqÞdq; (6)

which requires the specification of a prior probability distribution, pðqÞ,
referred to as the ‘‘prior’’, which captures what is known about the model

rate constants before any data is observed. The combination of the model

likelihood, pðy j qÞ as calculated in Eq. 5, and the prior pðqÞ, results in a pos-
terior probability distribution, pðq j yÞ, referred to as the posterior, that may

be calculated only pointwise up to a normalizing constant. This means an

analytical description of the posterior as a normalized probability distribu-

tion is not available, but the posterior distribution of the rate constants can

be estimated using MCMC sampling.

We now provide a basic outline of MCMC sampling. We define a sepa-

rate discrete-time Markov chain, noting here that this is a different mathe-

matical object from the aggregated Markov process defined previously,

which was used to define the likelihood function. The aim of this Markov

chain is to sample values from the posterior distribution and has the desir-

able property that its stationary distribution is the posterior distribution un-

der estimation. The Markov chain is initialized at an initial set of

parameters, qc, and the posterior probability density at this point pðqc j yÞ
is calculated. In each MCMC step, we define another probability distribu-
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tion Qð: j qcÞ, known as the proposal distribution, to propose a new set of

parameters, q�, given the current parameter values; for example, a Gaussian

distribution with mean equal to the current parameters. The posterior prob-

ability density of the proposed parameters is then calculated, pðq� j yÞ. The
move is accepted according to the Metropolis-Hastings acceptance ratio

(23), which means accepting the move with a probability given as

min

�
1;
pðq� j yÞqðqc j q�Þ
pðqc j yÞqðq� j qcÞ

�
: (7)

When the sampler uses a symmetric proposal distribution, Eq. 7 simplifies

to minð1; pðq� j yÞ=pðqc j yÞÞ, the minimum of 1 and the ratio of the values
of the posterior distribution at q� and qc. If the move is accepted, we set the

current parameters equal to the proposed parameters, qc ¼ q�, else we retain
the current parameters. At each iteration, we record the current parameters

as another sample from the posterior distribution. The Metropolis-Hastings

ratio ensures that the samples we obtain are in fact distributed according to

the posterior distribution. We note that there is an initial period during

which the chain is converging to the correct distribution; this is known as

the ‘‘burn-in’’ phase of the chain. These initial samples generated by our

sampler are therefore typically discarded in subsequent analysis and an

example of this convergence is shown in Fig. 3 A.

The main aims when choosing different MCMC samplers are 1) to maxi-

mize the speed of convergence of the chain and 2) to minimize the autocor-

relations of the MCMC samples generated by the algorithm. The first can be

assessed by plotting the parameters or the value of the log-posterior as the

MCMC chain iterates and collects the parameter samples. The second can

be assessed by calculating the autocorrelation lags of samples taken after

the chain has converged. A commonly used metric of sampling efficiency

that incorporates the autocorrelation of the samples is the effective sample

size (ESS), which gives an indication of the number of equivalent indepen-

dent samples drawn per sampling iteration or per unit of computational

time. Optimizing an MCMC sampler often involves assessing different

choices of proposal distribution Qð: j qcÞ. (For a brief introduction to

Bayesian methods and MCMC sampling algorithms, please refer to the

Supporting Materials and Methods S1 and S2; and for a full primer in the

context of biophysics, see Hines (15).) We now outline a strategy that dem-

onstrates an efficient sampling approach for evaluating the ion-channel

model posterior distribution.
MCMC sampling of ion-channel models with
missed events correction

We assume with all our examples that we know little about the values of our

rate constants, so that all rate constants have uniform priors. Opening and

closing rates and dissociation rates have a prior, U½0; 106�, whereas associ-
ation rates are limited by the theoretical rate of diffusion of the agonist, for

which we use a prior ofU½0; 1010�. It should be noted that these are the same

bounds that are in place during a typical ML model fitting, but within the

Bayesian framework they are specified as the prior probability distributions.

We propose a two-step MCMC sampling strategy that we present in

BICME. First, we employ a pilot MCMC based on a MWG sampling

scheme (24) to locate quickly the approximate mode of the posterior distri-

bution (25). We then switch to an adaptive MCMC sampler (26), which

learns a covariance matrix based on the empirical covariance between the

model parameters at this mode. This relies on the assumption that the pos-

terior distribution is unimodal. In fact analysis of single-channel records at

a single concentration can result in bimodal distributions (12), although in

practice the use of multiple concentrations for fitting often removes this sec-

ond false mode (27). Nonetheless, a different starting position for the pilot

MCMC sampler can be found by sampling initial parameters from the prior

distribution to assess convergence to the same mode. Our two-step

approach greatly speeds up the inference, because the second adaptive

sampler would converge much more slowly during the initial transient

phase of the Markov chain’s exploration of the parameter space.

https://github.com/DCPROGS/HJCFIT
https://github.com/DCPROGS/HJCFIT
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The pilot MCMC chain (see Algorithm S1 in the Supporting Material) is

based on a multiplicative MWG algorithm (24), which updates each param-

eter individually in log space with proposal distribution q� ¼ qey, where

y � Nð0;SÞ (Algorithm S1). The proposal distribution is scaled during

the burn-in phase of the chain to account for varying parameter magnitudes.

The benefit of this approach is that the multiplicative proposals in the orig-

inal parameter space speed up convergence of the Markov chain compared

to additive proposals. After convergence and location of the posterior mode,

an adaptive MCMC algorithm (26) is employed (Algorithm S2). The sec-

ond algorithm learns an appropriate covariance structure from the sample

history of the chain in such a way that it still converges to the correct sta-

tionary distribution; see Haario et al. (28) for full details.

We consider the ESS (see S2 in the Supporting Material) of each sampler

as a metric for sampling efficiency. For each sampling algorithm we can

assess both the ESS generated per iteration and the ESS per second of run-

time, giving an assessment of overall computational efficiency. In practice,

it is the second measurement that is often more important, because it gives a

direct measure of computational efficiency across algorithms, although this

may be highly dependent on specific implementations in code.
W
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FIGURE 1 Example model used for fitting. This seven-state model has

previously been used for the analysis of parameter identifiability in acetyl-

choline receptor gating (3) with limited time resolution using maximum

likelihood estimation (12). This model has three open states (in red) and

four closed states (in blue) and two agonist binding sites A and B. The

data are simulated assuming independent binding sites for the agonist.

An additional eighth state inside the dashed box is used to simulate data

at high concentrations (10 mM acetylcholine) but is not used for fitting.

To see this figure in color, go online.
RESULTS

Bayesian inference with synthetic data

We initially evaluate our method by examining whether the
dual MCMC sampling strategy we propose works on simu-
lated data produced with a well-characterized ion-channel
model. Simulated data at three different agonist concentra-
tions were fitted simultaneously. The model we chose
(shown in Fig. 1 with simulation rate constants in Table 1)
was first proposed by Colquhoun and Sakmann in 1985
(29) to describe single-channel activity of the muscle nico-
tinic receptor, and was validated by other labs (30). Hatton
et al. (3) investigated parameter identifiability when this
model was used to fit muscle nicotinic data using ML infer-
ence (12). This makes it ideal to test whether Bayesian infer-
ence can also successfully identify the model parameters. In
contrast to ML inference, we provide estimates of parameter
uncertainty derived from the posterior distributions. We
display how the uncertainty over the estimated parameters
affects the predictions of the observable features of the
data by drawing sets of parameters from the posterior distri-
bution and assessing the corresponding variability of the
predictions.

The muscle nicotinic ion-channel model used for fitting
(Fig. 1) has three open states, four closed states, and two
binding sites, A and B. The dashed box contains a desensi-
tized state used only to simulate high-concentration data
(12). This state is not fitted. We assume that the binding sites
are independent for this model, i.e., the presence of agonist
bound to one site (e.g., site A) does not impact the rates of
binding or unbinding of agonist at the other site (site B), and
vice versa. As the channel is at steady state, we can assume
that the principle of microscopic reversibility holds in the
mechanism. This means that, for the mechanism with a cy-
clic component in Fig. 1, the product of the rate constants
going clockwise around the cycle is equal to the product
of the rate constants in the anti-clockwise direction (20).
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This allows an additional rate constant to be constrained
(31). The assumption of independent binding sites, together
with the assumption of microscopic reversibility in the cycle
of the mechanism, reduces the number of rate constants to
be estimated from 14 to 10, because, as in Colquhoun
et al. (12), kþ1a ¼ kþ2a, kþ1b ¼ kþ2b, k�1a ¼ k�2a, and
k�1b ¼ k�2b.

Our design for the experiments reproduce that in the pre-
vious ML identifiability study with this model (12), with
respect to the number of events, concentration values, the
tcrit times chosen to divide the records into groups, and the
resolution imposed onto the raw records (25 ms). The
same rate parameters were used to generate raw records
(Table 1). Fig. 2 shows the workflow for the experiments.
Two sets of intervals using low agonist concentrations of
30 and 100 nM were simulated from the basic seven-state
model in Fig. 1. In addition, a set of intervals at a high
agonist concentration (10 mM) was simulated from the
same model that includes the additional desensitized state
A2D. The additional state is attached to the doubly liganded
26
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FIGURE 2 An experimental workflow to perform MCMC sampling us-

ing the muscle nicotinic receptor in Fig. 1. Two low-concentration datasets

(30 and 100 nM) are simulated and these records are separated into groups

(bursts), to account for the lack of knowledge of the number of channels in

the patch. A high-concentration recording is also separated into groups dis-

carding the intervals where the channel is desensitized. See Materials and

Methods for the definition of groups. The joint dataset comprising the

groups for all three sets is then used for MCMC sampling. The first sampler

(MWG) is used to locate the posterior mode. The adaptive sampler, started

at the mode, learns the covariances of the posterior distribution and then

draws samples for analysis.

TABLE 1 Parameter Values Used to Simulate Data from the

Model in Fig. 1, Reproduced from Colquhoun et al. (12)

Rate Units Value

a2 s�1 2000

b2 s�1 52,000

a1a s�1 6000

b1a s�1 50

a1b s�1 50,000

b1b s�1 150

bD s�1 5

aD s�1 1.4

k�2a s�1 1500

kþ2a M�1 s�1 2.0 � 108

k�2b s�1 10,000

kþ2b M�1 s�1 4.0 � 108

k�1a s�1 1500

kþ1a M�1 s�1 2.0 � 108

k�1b s�1 10,000

kþ1b M�1 s�1 4.0 � 108
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opening A2R* with transition rate constants aD ¼ 1:4,
bD ¼ 5 and is represented by the dashed box in Fig. 1. It in-
troduces into the simulated data long shut times that mimic
the long silent periods that appear in real experiments at
high acetylcholine concentrations. For each of the three
agonist concentrations, 20,000 intervals were generated, re-
flecting the number of events that can be gathered in a
typical single-channel experiment with the muscle nicotinic
channel. The tcrit time was set at 3.5 ms for the low-concen-
tration recordings and 5 ms for the high-concentration
recording. This tcrit value is used to break up the resolved re-
cord into groups of openings that almost certainly all ori-
ginate from the same individual channel. For the low
concentrations, CHS vectors were used in the calculation
of the likelihood (see Materials and Methods). We apply
the two-step MCMC sampling approach, described in the
Materials and Methods, to this synthetic data. For the initial
pilot MWG chain, 10,000 samples were drawn from the pos-
terior distribution, of which 5000 were discarded as burn-in
samples. Subsequently, the adaptive MCMC was started at
the posterior mode evaluated from the pilot chain output.
One-hundred-thousand samples were then drawn from the
posterior distribution using this second chain, and again
half of these samples were discarded as burn-in, because
the chain is initially learning the correlation structure of
the posterior distribution and takes time to converge to the
distribution of interest.

Whenever we employ MCMC to draw samples from a
distribution, it is important to examine diagnostics of the
Markov chain to ensure its convergence. We initially
consider some diagnostic plots of the pilot chain, the multi-
plicative MWG sampler (see Algorithm S1), used to locate
the posterior mode. One such diagnostic is to examine visu-
ally how quickly the chain converges to the posterior distri-
bution given its starting position. This can be done by
observing how quickly the value of the log-posterior of
the model approaches a stable, stationary time-series using
BPJ 7426
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a trace plot of how the log posterior value changes, with
each set of sampled parameters, as the chain iterates. In
Fig. 3 A, we observe the sampler converging quickly to
the posterior mode after fewer than 500 iterations. A second
possible metric involves calculating and plotting the auto-
correlations of the samples drawn by the MCMC chain after
it has converged. Although samples from the MCMC chain
are invariably autocorrelated, we aim to deploy an MCMC
chain that exhibits as little autocorrelation as possible. The
autocorrelations of each series of parameter samples are
considered a measure of the sampling efficiency of the
chain. This is distinct from any correlations that may be
observable between parameters in the posterior distribution.
Higher levels of autocorrelation mean that the sampler takes
a larger number of iterations to produce one independent
sample from the posterior distribution. In such cases we
say that our Markov chain mixes poorly. This is seen to be
the case in our example with the MWG sampler, which



A B C

D E F

W
e
b
3
C

FIGURE 3 Chain diagnostics for MWG and adaptive algorithms. (Top panel) MWG pilot sampler. (A) The sampler converges quickly to the posterior

mode. (B) The pilot MCMC chain exhibits high levels of autocorrelation in the posterior samples of parameter a2. Autocorrelation within the a2 sample

is defined as correlation between values of a2 at the nth iteration and the value at the n–lth iteration where l is the autocorrelation lag. (C) Five-thousand

samples drawn from the posterior distribution show the strong pairwise correlation between the rate constants b2 and a2. A similar correlation is observed

using experimental repetition in Colquhoun et al. (12). The random-walk nature of the MWG sampler results in proposals (red points) away from the ridge of

high posterior density, and this increases the number of rejected samples. The accepted samples are shown in blue. This is corrected by the adaptive MCMC

sampler (bottom panel). (D) The chain is started at the posterior mode and continues to sample from it. (E) The level of autocorrelation of a2 has been reduced

as the sampler has learned the posterior correlation between b2 and a2. (F) The proposals become much more efficient. This is seen in the substantial overlap

between the 5000 accepted samples (blue) and the 5000 proposed samples (red). To see this figure in color, go online.
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displays very inefficient mixing after convergence.
Although it was observed in Fig. 3 A that the MCMC chain
converged to the posterior mode in ~500 iterations, the pro-
posal distribution was allowed to adjust according to the
acceptance rate until 5000 samples had been drawn. We
therefore still discard the first 5000 of the drawn samples un-
der the assumption that these samples are drawn when the
MCMC chain is still converging. We considered the next
5000 of samples to be drawn from the posterior distribution,
and found that these 5000 samples exhibit high levels of
autocorrelation (shown in Fig. 3 B for parameter a2). This
is shown by the persistence of the sample autocorrelation,
even after the 100th lag. The reason behind this can be
examined by illustrating the distribution of proposed points
relative to those points that are accepted as samples. Fig. 3 C
plots the 5000 posterior samples of a2 and b2. This shows
that many proposals (red points) are made in areas of lower
posterior probability density, away from the ridge of high
posterior density. The posterior density is formed by the
accepted samples (in blue). The proposals clearly have an
uncorrelated Gaussian shape, quite different from the corre-
lated shape of the accepted parameter values. We can
conclude from this graph that this algorithm learns the
BPJ 74
required proposal scales per parameter through adjusting
the proposal variance, but cannot take into account the cor-
relations between parameters in the posterior distribution.
This results in inefficient sampling after convergence.

The mode of the posterior distribution represents the
point of highest probability density in the posterior distribu-
tion and has been located using the MWG algorithm. How-
ever, we have shown that this sampler draws samples
inefficiently once it has converged to this mode. This is
why we use the second sampler, the adaptive MCMC algo-
rithm (see Algorithm S2), which is started at the posterior
mode obtained by the first sampler. The adaptive sampler
learns the parameter correlation from the history of samples
drawn by the chain and therefore, after the burn-in period,
makes correlated proposals that are more likely to be
accepted as new parameter samples in the Metropolis-Hast-
ings acceptance step. This leads to a chain that exhibits a
lower level of autocorrelation and thus needs to be run for
a shorter number of iterations to produce the equivalent
number of independent samples as the initial pilot MWG
algorithm.

The bottom panel of Fig. 3 demonstrates the benefit of us-
ing this adaptive sampler initiated at the posterior mode
26

Biophysical Journal 111, 1–16, July 26, 2016 7



Epstein et al.

Please cite this article in press as: Epstein et al., Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction, Biophysical Journal
(2016), http://dx.doi.org/10.1016/j.bpj.2016.04.053
(Fig. 3 D). This sampler learns the posterior correlations,
and this reduces the autocorrelation of the resulting samples
(shown again by plotting parameter a2 in Fig. 3 E). Fig. 3 F
demonstrates the improved efficiency of sampling using an
adaptiveMarkov chain. This is shown by the tight overlap of
the proposed parameter values (in red) with the samples that
are actually accepted (in blue).

In Table 2 we compare the efficiency of the two
samplers based on the ESS. This provides a measure of
sampling efficiency per iteration and per unit of computa-
tional time, as defined in the Materials and Methods. The
adaptive sampler is superior to the pilot MWG sampler,
both in terms of equivalent independent samples per itera-
tion and equivalent independent samples generated per min
of computational time. This further validates the approach
of using a two-step sampling technique—firstly, the MWG
sampler to quickly locate the posterior mode and secondly,
the adaptive sampler to sample more efficiently from the
posterior distribution once this mode has been found.
Although the adaptive sampler can be used in isolation, it
takes longer to converge to the mode of the posterior.
The run time (in minutes) for the two algorithms is
also shown, and each sampler takes ~1 h to complete on
an Intel 2.5-GHz core i7 MacBook Pro (Intel, Mountain
View, CA; Macintosh, http://www.apple.com/mac/) with
16 GB of RAM.

We now examine the posterior samples generated by the
adaptive sampler. The individual posterior distributions for
the 10 rate parameters, known as marginal distributions,
are shown in Fig. 4 (in blue). The rate parameters used to
generate the synthetic data are shown by the dashed black
lines. The fact that each distribution is constrained and en-
closes the true rate constant demonstrates that the correct
rate constants originally used to generate this data can be
identified and recovered as in the original ML study (12).
Next, we observe that the shape of the marginal distributions
appears Gaussian. Given our choice of uniform priors (see
Materials and Methods), we note that the location of the
posterior mode has to be the same as the location of the
ML estimates and therefore we can directly compare each
TABLE 2 Effective Sample Sizes and Run Times for the

Converged MWG Pilot and Adaptive Samplers for Distribution

of the a2 Parameter

MWG Adaptive

Number of significant lags 137 81

ESS/sample 0.01 0.03

ESS/minute 0.99 23.65

Runtime, minutes 57 64

Adaptive sampling is three times as efficient as the MWG sampler, in terms

of samples per iteration (see second line). Furthermore, it is much more

computationally efficient in terms of samples per min. The number of sig-

nificant lags is the number of lags for which the autocorrelation coefficient

is significantly greater than zero and so these lags are used in the calculation

of the ESS estimates.
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marginal distribution to the Gaussian distribution that would
be used to estimate asymptotic standard errors for parameter
estimates in a maximum-likelihood estimation. We obtain
estimates of the standard errors by inverting an estimate of
the Hessian at the posterior mode. Comparing the shape of
the error distributions (in red, Fig. 4) with the obtained mar-
ginal distributions for the parameters reveals that the shape
of the posterior distributions are indeed approximately
Gaussian. Hence in this case, similar conclusions would
be drawn about parameter identifiability and uncertainty us-
ing Bayesian inference and ML.

We can now illustrate the impact of the uncertainty in
the estimated parameter posterior distribution on the uncer-
tainty of model predictions, by taking samples from the
posterior distribution and using them to simulate predic-
tions of open and shut interval distributions and the corre-
lation between the durations of adjacent open and shut
intervals from the model. All predictions are corrected
for missed events so that they can be compared directly
to the observed data. One-hundred parameter samples
were taken at random from the posterior distributions of
the adaptive sampler (shown in Fig. 4). Predicted distribu-
tions were then calculated using these samples to assess
how well they reproduce the observed data and how vari-
able the model predictions are. These predictions are
shown in Fig. 5.

The variability in the predictive open time distributions,
at low concentration (30 nM) and high concentration
(10 mM), are shown in Fig. 5, A and D. As expected
from previous identifiability analysis of the channel (12),
the model fit is very good across all concentrations. This
figure demonstrates that uncertainty in the model predic-
tions decreases as the agonist concentration increases.
This is apparent as the range of the curves evaluated
from the parameter samples becomes narrower as the thick-
ness of the superimposed predicted curves (red) is reduced.
Note the higher variability in the prediction of short open
times at low concentration. This is to be expected as low
concentration records contain sparse information compared
to high-concentration records, because they have fewer us-
able shut times due to the short tcrit required to separate the
record into individual channel activations. They are none-
theless the predominant source of information on single-li-
ganded openings in the model. At high concentrations, the
record is rich with predominantly diliganded openings, and
so this aspect of the channel is very accurately predicted.
Shut time distributions (Fig. 5, B and E) are predicted
well across both concentrations, because although we
have treated the recordings so that there may be multiple
channels in the patch, in reality we have simulated the
data with only one channel. In practice, we would not
be able to predict accurately the shut time distribution
beyond tcrit. In all open and shut distributions, the impact
of not taking missed events into account is illustrated by
the difference between the green probability densities

http://www.apple.com/mac/
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FIGURE 4 Marginal posterior distributions for model parameters obtained from synthetic data are shown in blue. The black vertical lines indicate the

parameter values used to generate the data. The association rate constants kþ2a and kþ1b are in s�1 M�1 units, otherwise the units are s�1. The posterior

parameter distributions enclose the rate constants and show that the Bayesian approach can recover the rate parameters used to generate the data. Plotted

in red are Gaussian distributions obtained from the Hessian at the mode. This shows that the posterior distributions in this example are approximated

well by Gaussian distributions. To see this figure in color, go online.
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(which are the open or closed probability densities
assuming perfect resolution calculated from Eq. 2) and
the red densities (which correctly assume the finite
recording resolution using Eq. 3). This illustrates the
importance of applying the missed events correction in
the open and closed probability density functions before
comparing the model predictions to what is actually
observed.

One of the key considerations of any proposed ion-chan-
nel model is the ability of the postulated model to reproduce
the degree of correlations between adjacent open and shut
intervals observed in experimental data. A feature of nico-
tinic muscle channel behavior is that at low concentrations
there is a negative correlation between the length of the
open interval and the length of the preceding shut interval.
Predictions of such model correlations are shown alongside
correlations observed in the empirical data in Fig. 5 C for
low concentration and Fig. 5 F for high concentration.
The model correctly recovers, with high accuracy, the nega-
tive correlation between the duration of shut intervals and
the duration of the following open intervals observed at
low concentrations, as does the original ML fit (12). At
high concentrations, no correlation is predicted or observed.
This is because diliganded openings are predominantly
BPJ 74
observed at this concentration. This represents only
one kind of opening in the channel and so correlations are
absent (32).
Sampling with experimental data results in a
non-Gaussian posterior distribution

Real data from a nicotinic acetylcholine receptor (3) were
used to test our MCMC approach. As with the simulated
data, the experimental recordings were taken at three
concentrations. A summary of these three datasets and their
experimental conditions is described in Table 3.

Similarly to the synthetic example, we begin our analysis
by considering the diagnostic output from our MCMC
sampler. The pilot MWG sampler successfully located the
posterior mode, and at this stage we consider only the
output of the adaptive sampler. Fig. 6 A shows how the adap-
tive chain samples starting from the posterior mode
(Fig. 6 B) draw samples efficiently from the posterior
distribution of a2, given the correlation between rate param-
eters a2 and b2 that was observed also in the synthetic
example (Fig. 6 C). This demonstrates that our MCMC
approach successfully samples from both real and synthetic
data.
26
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FIGURE 5 Predicted distributions of model behavior at low (30 nM, top panel) and high acetylcholine concentrations (10 mM, bottom panel). 100 samples

taken at random from the posterior distributions of the model in Fig. 1, fitted to synthetic data, are used to calculate predictive open time distributions

(A and D), shut time distributions (B and E), and correlations between adjacent closed-to-open sojourns (C and F). The open and shut time distributions

show the predicted durations of intervals with the imposed resolution of 25 ms (red), and with perfect resolution (green), and are overlaid by the observed

durations summarized as a histogram (blue). Open-shut correlations are examined by calculating the mean of the succeeding open interval against the mean

of the preceding shut interval, conditional on range of preceding shut interval durations (11). Mean durations predicted by the model are denoted by red

points. These are consistent with the conditional mean calculated from the observed experimental data (blue points with SD error bars, connected with a

blue line). The shut range intervals used to calculate the conditional means are (0.025–0.05, 0.05–0.1, 0.1–0.2, 0.2–2, 2–20, 20–200, 200–2000) ms. The

plots in (A), (B), (D), and (E) show that there is excellent agreement of the predictions from the fit with the time resolved open and shut distributions

and that it becomes more precise as the agonist concentration increases. In practice, the shut distributions and correlations can be interpreted only up to

the value of the tcrit interval (marked on the graph) as it is not known how many channels are in the patch. The model can also recover the correlations

observed in the adjacent shut to open intervals up to the tcrit value. To see this figure in color, go online.
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Fig. 7 shows the marginal posterior distribution of the rate
constants. Most rate constants are close in shape to a
Gaussian distribution, and hence approximated well by the
Hessian derived at the mode. However, that is not so for
the faster monoliganded opening and shutting rates and
those for the B binding site, b1b and a1b. For these rates,
the posterior distributions are nonsymmetrical, and conse-
quently their uncertainty is not directly captured well by
the Gaussian error approximation used in a typical ML
approach.

We can again assess the impact of parameter uncertainty
on the predicted output of the model (Fig. 8). One-hundred
samples were again taken at random from the posterior dis-
tribution in Fig. 7 and used to calculate summary distribu-
TABLE 3 Experimental Conditions and Summary Data for Real Ace

Set ACh Concentration (mM) Number of resolved intervals

1 0.05 14,056

2 0.1 24,230

3 10 13,822

The resolution for all recordings was 25 ms. The table summarizes the number of

the resolved intervals into groups, the number of resulting individual groups (se

openings in each group.
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tions of open, closed, and conditional mean open times.
Predictions of open time distributions again become more
certain with increasing concentration, with the short open-
ings at low concentration being most variably predicted
(Fig. 8, A and D). Shut interval distributions at low concen-
tration (Fig. 8 B) illustrate the ambiguity posed by not
knowing how many channels are in the experimental patch.
Although the short shut interval components are well pre-
dicted, longer shut interval durations are not, because the
presence of many channels in the low-concentration exper-
imental patches makes the observed lifetime in the long shut
state appear to be shorter than it actually is. In practice, it is
accepted that due to this limitation, only short shut events up
to tcrit can be inferred reliably from the experimental data.
tylcholine Receptor Recordings from Hatton et al. (3)

tcrit (ms) Number of groups Use CHS vectors

2 4134 yes

3.5 8471 yes

35 134 no

resolved intervals in the experimental patch, the tcrit interval used to separate

e Materials and Methods), and whether CHS vectors are required for initial
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FIGURE 6 Chain diagnostics for the adaptive algorithm with experimental data (compare to Figs. 3,D–F). (A) The adaptive chain is started at the posterior

mode, as shown by the red horizontal dotted line. (B) The adaptive sampler produces efficient samples from a2 parameter as it has learned the pairwise pos-

terior correlation between a2 and b2 shown in (C). This is shown by the tight overlap with the proposed samples (red) and the accepted samples (blue) be-

tween the a2 and b2 parameters. To see this figure in color, go online.
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In determining the model prediction of the mean open
time conditional on the preceding mean shut time, model
predictions are fairly accurate across agonist concentra-
tions (Fig. 8, C and F). The negative correlation with
the preceding shut interval duration is reasonably ac-
counted for by the model at low concentrations, although
predictions of mean intervals after tcrit, indicated on each
chart, for the experimental patch must be taken with
FIGURE 7 Marginal posterior parameter distributions calculated using experim

imation obtained from the Hessian mode is shown in red. It is clearly seen that

This uncertainty is more accurately captured by the Bayesian approach. The asso

units are s�1. To see this figure in color, go online.

BPJ 74
caution given the unknown number of channels in the
patch (3).
Inferential approaches should account accurately
for the limitations of raw recordings

We have shown, using our synthetic example, that a model
likelihood based on a continuous-time Markov model can
ental data using adaptive MCMC are shown in blue. The Gaussian approx-

the posterior of parameters a1b and b1b exhibit non-Gaussian distributions.

ciation rate constants kþ2a and kþ1b again are in s
�1 M�1 units, otherwise the

26
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FIGURE 8 Predicted distributions of model behavior at low (50 nM, top row) and high acetylcholine concentrations (10 mM, bottom row). One-hundred

samples from the posterior distributions of the model (Fig. 1), fitted with real data, are used to calculate predicted distributions, analogous to those generated

in Fig. 5. The predicted durations of intervals with the imposed resolution of 25 ms are again shown in red, and with perfect resolution in green. The predicted

distributions of the model are less precise with this real dataset than for the synthetic dataset. The open time distributions (A and D) are still generally well

predicted, but show variability near the resolution time. The long component of the low-concentration shut intervals (B) is poorly predicted as expected, as no

information is available about the numbers of channels in the patch. This results in accurate inferences about the shut time distribution being restricted to the

dwell times up to the tcrit interval. To see this figure in color, go online.
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recover rate constants used to generate datasets from a phys-
iologically realistic model of a muscle nicotinic receptor.
The key to the success of this approach is an accurate ideal-
ization of the noisy filtered record and the correction for
missed events that arises from the filtering of the raw record-
ings, as described in Materials and Methods. In practice, the
incomplete detection of opening and shut intervals is a very
real problem for accurately inferring model parameters from
single-channel recordings. Indeed, it was estimated in a real
channel record that even with good resolution, as many as
88% of short shuttings may be missed (5).

An alternative practical Bayesian approach to single-
channel analysis has recently been described in Siekmann
et al. (18,19). It has been claimed that this method can
detect model overparameterization more robustly than a
maximum-likelihood inferential method that provides an
approximate correction for missed events (33). Broadly,
the method of Siekmann et al. (19) relies on estimating a
model likelihood from sampled points in the single-channel
record. The model likelihood makes no probabilistic state-
ment about the states of the channel between sampling
points and it is claimed therefore that this method does
not need to correct for missed events. It is therefore a natural
step to compare our Bayesian method with missed-events
correction with the Bayesian approach of Siekmann et al.
(19), using datasets that have missed events incorporated
BPJ 7426
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into the channel record to mimic the effect of filtering the
raw trace.

The method of Siekmann et al. (19) can briefly be defined
as follows: raw sampling points are taken at time intervals dt
from an experimental trace. These points are classed into
open or closed observations in the trace by half-thresholding
each sampling point. These are the data on which inference
of the model rate constants is performed. Note that experi-
mental noise and missed events may cause the classification
of the open and closed points to be wrong.

The rate constants in the Q matrix are then used to
calculate a Markov transition matrix T ¼ expðQdtÞ that
denotes the individual probabilities of moving from one
state at the start of the sampling interval to another at
the end of the sampling interval. This uses the whole Q
matrix (as for macroscopic currents), and considers only
the state of the system at the sampling points (20). There
may be any number of transitions between the sampling
points. A discrete likelihood for the entire record is then
calculated using this transition matrix and the projections
for each sampling point that restrict the entry and exit
states of the process as defined by the thresholding.
The likelihood is calculated using a forward algorithm
commonly used to estimate likelihoods in discrete HMM
models. This likelihood, in combination with a weakly
informative prior distribution for the rate constants forms
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the posterior distribution that is sampled using an MCMC
algorithm (19).

We reproduced the synthetic experiment from Siekmann
et al. (19) in conditions of perfect resolution and after
imposing progressively worse resolution to emulate the pro-
cess by which filtering raw experimental traces results in
missed events in the outputted signal. We did this to test
empirically whether the analysis method from Siekmann
et al. (19) and from this article are equivalent in retrieving
the rate constants of the model.

We have used the four-state ion-channel model and rates
described in Siekmann et al. (19) (Fig. 9), to simulate 15,000
sojourns, assuming unrealistically that there is only one
channel in the patch. This perfect resolution dataset, R,
was sampled at 50 ms to produce 100,000 points, as in Siek-
mann et al. (19). The original sojourn intervals were also
stored for comparison with the likelihood and sampler
described in the Materials and Methods.

This ideal, perfect resolution record R, was then subjected
to increasing coarsening of time resolution. Separate addi-
tional datasets of continuous records were generated from
Rwith time resolutions of 10, 20, 30, 40, and 50 ms. This con-
catenates shorter intervals than the resolution with the adja-
cent resolved intervals. This distorts the channel record to
an increasing degree as the resolution time worsens and
FIGURE 9 Experimental workflow to examine the requirement for

missed events correction. Raw data was initially simulated from the four-

state ion-channel model and rates from Siekmann et al. (19). k13 ¼ 3500,

k31 ¼ 7000, k34 ¼ 400, k43 ¼ 500, k42 ¼ 100, and k24 ¼ 50. Rates in s�1.

To see this figure in color, go online.
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mimics the act of filtering in real experimental traces. Next,
for each dataset, the data was again sampled at 50 ms to pro-
duce 100,000 discrete data points. Posterior parameter sam-
ples were generated using these datasets with the discrete
likelihood MCMC algorithm and codebase (https://github.
com/merlinthemagician/ahmm/) of Siekmann et al. (19).
The continuous time sojourns for each dataset were then
analyzed separately using the initial MWG pilot MCMC al-
gorithm described in the Materials and Methods. Thus the
performance of the two methods can be compared over
with the same amount of information. The prior for the rate
constants in both sets of experiments was the same as Siek-
mann et al. (19). Posterior distributions were estimated after
both MCMC samplers had converged.

The posterior distributions from the Siekmann likelihood
(19) and that from our method, which uses the likelihood of
Colquhoun et al. (11), were examined at each resolution to
establish whether they could recover the rate constant values
that generated the initial dataset, R. The comparison for the
faster rate k31 is shown in Fig. 10 A. It is clear that estimates
obtained with the method of Siekmann et al. (19) become
increasingly biased as the resolution worsens. Even with
an optimistic resolution of 20 ms, the posterior distribution
of rate constant k31 is biased away from the correct value
(dashed red line). In contrast, the correct rate constant can
still be recovered using our analysis (Fig. 10 B) even at
the worst resolution (50 ms). It is interesting to note that
A

B

W
e
b
3
C

FIGURE 10 Simulation based on an example from Siekmann et al. (19)

highlights the requirement for missed events correction. (A) Posterior distri-

butions of rate constant k31 using the likelihood of Siekmann et al. (19)

sampled from data with worsening resolution times imposed (0–50 ms).

These distributions become more biased as the resolution worsens. (B)

The same analysis with our likelihood (11) and Pilot MWG MCMC

sampler. This true parameter value is shown as the red-dashed line on

both charts. To see this figure in color, go online.
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even in these limited MCMC runs, the inference over the
rate constant k31 in Fig. 10 B becomes less precise. This is
seen by a broadening of the posterior, and would be ex-
pected despite the missed events correction, as more infor-
mation is removed from the record.

It is worth noting also that a rate constant value of
7000 s�1 is relatively slow for an ion channel. At a resolu-
tion of 50 ms, the fraction of events expected to be missed
in this example is only 29% of openings and 16% of shut-
tings. It is to be anticipated that this problem will worsen
with faster channels with their quicker rate constants.
DISCUSSION

In the context of modern single molecule biophysics, the
modeling of single ion-channels using Markov processes
has a comparatively long history. Inferential techniques
for rate parameters have progressed from the fit of exponen-
tial components to dwell-time distributions (29) to ML ap-
proaches that use the sequence of the observed signal
(11,33). Current full-likelihood approaches broadly consist
of two alternative methods. The first involves fitting a
continuous-time Markov process to a signal idealized
from the raw, filtered data typically by the use of threshold
crossing or by time course fitting idealization (2). Filtering
of the original signal is needed to enable event detection,
but events of short duration are absent in the filtered record
and subsequent idealization. This requires an explicit
correction for missed events, as the model likelihood makes
probabilistic statements regarding the state of the process
through time (Eq. 1). The most widely used modeling ap-
proaches employ ML estimation with a continuous time
model with either an approximate (33) or an exact correc-
tion (11,21,22) in the likelihood for missed events.

A second approach using discrete hidden Markov models
has been applied to extract information directly from the
raw data, without the idealization step (34). HMMs often
require the estimation of the distribution over hidden states
at each sampling point during the likelihood calculation.
Calculating the likelihood directly from raw recordings in
practice can require implementing higher-order Markov
models, to account for correlated experimental noise
(35,36), and this increases the computational complexity
of calculating the model likelihood. More recent methods
avoid this issue by classifying points as either open or closed
(19). Maximum likelihood inference of rate constants in
HMM models is often achieved by implementing bespoke
Forward-Backward algorithms combined with Baum’s
reestimation (37) or direct optimization (38). We note that
likelihoods defined in this manner make no probabilistic
statement about channel activity between sampling points,
and it has been claimed that no missed events correction
is necessary (18). However, we have demonstrated that
even for a simple ion channel model with four hidden states,
HMM approaches that do not account for the unavoidable
BPJ 7426
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consequences of filtering and experimental noise, for
example by fixed rather than probabilistic classifications
of sampling points into conductance classes, result in
severely biased inferences when using realistically sampled
data.

We must seek to evaluate the quality of our estimates
whenever we infer parameter values from data. This should
involve establishing as realistically as possible that they are
unbiased, and measuring the extent of our uncertainty in
their values. For single-channel modeling, this has been
achieved in examples where ML point estimates were
used by using simulation (5,12), although this simulation
can be a laborious approach. The use of Bayesian inference,
where by definition we obtain the posterior distribution
rather than point estimates of the parameters, is beneficial
in making these checks efficient and systematic. Bayesian
approaches to date have used MCMC sampling in combina-
tion with either the continuous time (39,40) or discrete like-
lihoods (16,18,19) to compute posterior distributions. We
have demonstrated in this article that the correction for
missed events is still vitally important to recover the correct
rate constants even in small model examples. We therefore
investigated MCMC sampling approaches that use a model
likelihood that both corrects exactly for missed events and
takes into account the unknown numbers of channels in
each experimental patch (11).

We have proposed a two-stage sampling approach for per-
forming Bayesian inference in these computationally expen-
sive models, and made the package BICME available to
download as MATLAB code (The MathWorks, Natick,
MA). The first step relies on a MWG pilot algorithm to effi-
ciently locate the posterior mode. This is followed by an
adaptiveMCMC sampler, which learns the covariance struc-
ture of the joint posterior distribution to sample the posterior
distributions more efficiently. With these tools we per-
formed our Bayesian analysis on a physiologically realistic
ion-channel model for a muscle nicotinic acetylcholine re-
ceptor. This model’s identifiability has previously been eval-
uated using ML estimation (12). The sampling approach
was initially evaluated using synthetic data and demon-
strates how parameter identifiability can be established
and how uncertainty in model parameterization can help
examine directly the uncertainty in model predictions. A
subsequent application using experimental data confirms
the proposed approach can implement Bayesian inference
in these models by efficiently sampling from the resulting
posterior distribution. We show that, with real data, some
posterior distributions are non-Gaussian in shape.

As in a typical Bayesian analysis, we report the full pos-
terior distributions of the rate parameters rather than point
estimates. We do note, however, that for our choice of prior
distribution, the point estimates of rate constants as defined
by the posterior mode would be the same as those that would
be found by ML estimation. In the example with synthetic
data, the posterior distributions are close to Gaussian and
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their shape well approximated by a covariance matrix calcu-
lated at the ML estimate. This is not the case with experi-
mental data. In this instance the Bayesian approach has
the advantage in cases where the posterior distributions
are nonsymmetrical, in which case the posterior distribution
gives a more realistic estimate of the uncertainty in the
parameter estimates than error estimates derived from ML
estimation.

Our approach was specifically designed to sample effec-
tively for higher-dimensional ion-channel models and will
form the basis for future work examining candidate models
with larger numbers of rate parameters. In such models
it has been shown that robust model parameterization and
comparison remains statistically challenging (7). In the
latter case, this sampling method will help measure uncer-
tainty in the competing mechanistic models through the esti-
mation of marginal likelihoods, which will form the basis of
future research.
SUPPORTING MATERIAL

Supporting Materials and Methods are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(16)30450-7.
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