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1744 D. Colquhoun and others 

Experiments are often performed to study the behaviour of a single ion channel in 
response to a perturbation produced by a step change ('jump') in a variable that 
influences its equilibrium position, for example a voltage jump or jump in agonist 
concentration. It is also common to apply a rectangular pulse (consisting of an on 
jump followed by an off jump); for example brief concentration pulses are used to 
mimic synaptic transmission. 

Assuming a general Markov mechanism for channel dynamics, we obtain theo- 
retical probability distributions of observable characteristics that describe the non- 
stationary behaviour of single ion channels which are subject to a jump, or to a pulse 
of finite duration. These characteristics are such things as open times, shut times, 
first latency, burst length and length of activation. We concentrate particularly on 
jumps to or from a zero level of agonist, which necessitates some modification to the 
usual arguments to cope with having some absorbing sets of states. Where possible, 
we include results which make allowance for the phenomenon of time interval omis- 
sion, whereby some short intervals may be missed due to imperfect resolution of the 
recording method. A numerical example is studied in detail. 

1. Introduction and background 

(a  ) Introduction 

Single ion channel currents are, most commonly, investigated in steady state record- 
ings. The theoretical basis for the interpretation of steady state channel currents is 
now quite well established (see, for example, Colquhoun & Hawkes 1995a). There are 
two good reasons to be interested in ion channels that are not in the steady state. 

First, from the physiological point of view, ion channels are most commonly not in 
a steady state. For example, a nicotinic receptor channel in a muscle fibre is exposed 
only very briefly to the agonist (acetylcholine) that causes it to open, and during 
most of the time that the channel is open the agonist concentration has decayed to 
essentially zero. 

Second, from the point of view of learning about kinetic mechanisms, the steady 
state response of a channel is essentially a special case of the non-stationary response 
(the state achieved as t 7. m). Except in the very simplest cases, it is likely to be 
hard to identify a kinetic mechanism from steady state data alone, and it will be 
impossible to predict the non-stationary (physiological) behaviour from measure- 
ments of stationary behaviour alone. This phenomenon is well exemplified by the 
NMDA type of glutamate receptor channel. This channel shows behaviour that is 
considerably more complicated than that of the muscle nicotinic channel (e.g. Gibb 
& Colquhoun 1992), and the steady state single channel recordings cannot predict 
the response of the channel to a brief pulse of agonist, of the sort that it encounters 
in a real synapse (Edmonds & Colquhoun 1992). 

The value of macroscopic jumps is well known both for voltage-operated channels 
(e.g. Hodgkin & Huxley 1952) and for agonist-operated channels (e.g. Ranke et al. 
1993), but measurement of single channel characteristics after a jump is potentially 
even more informative (e.g. Aldrich et  al. 1983; Edmonds & Colquhoun 1992). In 
many experiments, a simple step change (e.g. in membrane potential or in agonist 
concentration) has been used. However, in order to mimic the physiological situation, 
it is common now to apply a brief pulse rather than a simple step. A pulse consists 
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Properties of single ion channel currents 1745 

of two steps, or jumps, in succession, so the theory is a bit more complicated than 
for a simple step. Some of the theory for non-stationary single channel behaviour 
was presented by Colquhoun & Hawkes (1987), but this work had three limitations. 
Firstly, it dealt only with simple step changes, not pulses. Secondly, it did not deal 
with the special case of a step change of agonist concentration from a finite value 
to zero (which is very common in practice, but which involves some complications). 
Thirdly, it did not deal with the case of limited time resolution. 

The case of a jump from a finite agonist concentration to a zero agonist con- 
centration (e.g. at the end of a pulse) is complicated because, when the agonist 
concentration is zero, some states (those that are reached by binding of agonist) 
may, depending on the details of the model, become inaccessible. In this case some 
matrices which are normally invertible become singular. And it will also be the case 
that there will be only a finite number of openings after the concentration falls to 
zero; eventually all channels will close (unless spontaneous openings are possible in 
the absence of agonist). The techniques for dealing with this case are considered in 
5 2 and extended to pulses in 5 3. 

The results given here apply to any sort of jump, but much emphasis is placed on 
jumps to and from a condition (e.g. zero agonist concentration) in which channels 
are all closed. In the case of voltage-activated channels, matters are complicated by 
the fact there is no absolute zero on the voltage scale. Nevertheless it will often be 
possible to make voltage jumps to and from a membrane potential where channels 
are essentially always closed. 

In practice, the ability to resolve brief openings and shuttings is always limited. 
Clearly, if brief openings are missed, measurements such as the latency to the first 
opening may have serious errors. Furthermore, in order to use the results given here 
for maximum likelihood fitting, we need distributions that describe what is actually 
observed, rather than what would have been observed if the resolution had been 
perfect. The distributions relevant to single channel currents observed in response to 
a pulse of agonist, with exact allowance for missed events, are described in 5 4. 

The principles and notation are those employed by Colquhoun & Hawkes (1982). 
An introduction is given in Colquhoun & Hawkes (1995a, b).  The underlying system 
is modelled by a finite-state Markov process, X( t ) ,  in continuous time; X( t )  = i, 
denotes the system is in state i at time t. The rate constants for transitions between 
states i and j (i # j) are the elements, q i j ,  of the transition rate matrix Q ,  and the 
diagonal elements, q i i ,  are defined so that the rows sum to zero. 

( b  ) The ideal case 
If the k states of the system are divided into subset A containing the open states, 

kA in number, and subset F containing the shut states, kF in number, so kA+kF = k, 
then the Q matrix may be partitioned as 

The equilibrium occupancies of the various states are contained in the row vector 
p(w) which satisfies the equation 

where U is a column vector whose elements are all unity, so the second part of the 
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1746 D. Colquhoun and others 

equation merely says that the probabilities must add up to one. Methods of solving 
this equation are well known (e.g. see Colquhoun & Hawkes 19958). 

The intervals between the points when the channel opens and closes have proba- 
bility densities given by the matrix 

The elements, gij(t), of the top right-hand corner of this matrix give the probability 
density for staying within the open states (set A) for a time t and then leaving for 
shut state j ,  conditional on starting in open state i (see Colquhoun & Hawkes (1982) 
for details). The Laplace transform of this matrix will be denoted by 

where 

If we consider only what state is entered next, regardless of the length of time 
spent in the current state, we obtain 

where we define 

Thus, for example, GA3 has elements that give the probability of leaving the set of 
open states for shut state j, conditional on starting in open state i, regardless of how 
long it takes for this transition to occur. 

(i) Analysis of bursts 
It is frequently observed that openings seem to occur in bursts, separated by long 

shut periods. In order to model this, the set of shut states is divided into two sets: a 
set of short-lived shut states, denoted B, and a set of long-lived shut states, C. Thus, 
F = B U C. Then the Q matrix can be partitioned into three blocks, 

The points at which transitions between the three sets of states occur, together 
with the states occupied at those times, form a Markov-renewal process (the termi- 
nology is not uniform in the literature, we use it in the sense of Cinlar (1975)) with 
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transition densities, which generalize (1.3), given by 

where, for a and p representing any of the symbols A, B or C, 

with corresponding Laplace transform 

The i j th  element of Gap(t) gives the probability density for staying within the set 
of states a for a time t and then leaving for the j th  state of set P,  conditional on 
starting in the ith state of the set a. 

The transition probabilities, regardless of how long it takes for the transition to 
occur, are given by 

(1.12) 

which generalizes (1.7). 

( c )  The case of limited time resolution 

The definition of an apparent open time used here, and in most other work on the 
subject, is as follows. If a fixed dead-time ( is assumed, then an apparent opening is 
defined as starting with an opening of duration at least ( followed by any number of 
openings and shuttings, all the shut times being shorter than F ;  the apparent opening 
ends when a shut time longer than ( begins. A similar definition is used for apparent 
shut times. This definition should give a good approximation to the values that are 
measured from an experimental record in most cases (though this is, to some extent, 
dependent on what method is used for measuring the record). 

A number of papers have attempted to deal with this problem. In particular, the 
first comprehensive treatment was given by Ball & Sansom (1988), but we refer to 
the notation and methods of Hawkes et al. (1990, 1992) and Colquhoun et al. (1996) 
for obtaining the stationary distributions. 

In particular, the distribution of apparent shut times depends on the important 
matrix function FR(u) whose i j th  element (i, j E F) is 

3 ~ , j  (U) = P[X(u)  = j and no open time is detected over (0, U) IX(0) = i]. (1.13) 

An exact formula for this matrix function is given in Hawkes et al. (1990), and 
asymptotic values (large U )  are given in Jalali & Hawkes (1992) and Hawkes et al. 
(1992) or, more succinctly, in Colquhoun et al. (1996). 

The precision of the asymptotic solution is such that the exact solution for FR(u) 
need be calculated only for U 2(, over which range the exact solution is relatively 
simple. These results are usually stated in terms of a matrix A ~ ( u ) ,  which is like 
FR(u), but which is involved in the distribution of apparent open times (the results 
for shut times being obtained by exchanging symbols in the formulae) but, for the 
sake of completeness, and because it is the results for shut times that we need in 5 4, 
we give the explicit formulae for ?R(u) in an Appendix. 
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(i) How exact is the model for missed events? 

It is worth considering to what extent the definition of an 'apparent opening or 
shutting' corresponds with what is actually observed. What is observed will depend 
on both how the experimental record is filtered and how it is analysed. For example, 
it is possible that the effect of filtering could cause two openings occurring in quick 
succession to  sum and so be counted as a single event longer than the dead time 
when in fact both openings were shorter than the dead time. This sort of error is 
a particular hazard when the record is fitted with the threshold crossing method; 
it is much less likely to occur when time course fitting is used (see Colquhoun & 
Sigworth 1995). Even with the latter method, some events are encountered with an 
odd or ambiguous shape, such that it is impossible to be sure how best to  fit them. 
Such events are, however, quite rare and unlikely to cause serious errors in most 
cases. 

It is worth reiterating the desirability of not relying on some theoretical dead 
time of the apparatus, but imposing a fixed dead time, or resolution, on the data 
retrospectively (as described by Colquhoun & Sigworth (1995)). (It is unfortunate 
that most commercial programs have not got this capability.) Imposing a longish 
resolution will minimize this sort of error, but will also throw away some good data. 
There is also a theoretical hazard in the imposing of a fixed resolution, since this 
process is necessarily carried out on a filtered non-ideal recording. In principle, the 
imposition of a fixed resolution on such a record will give results that are not identical 
with those that would have been found had it been possible to  carry out the same 
imposition on the underlying ideal record. The errors from this source have never 
been investigated quantitatively, but are unlikely to be large. 

2. Single channels following a jump to zero agonist concentration 

The usual Markov models for ion channels assume that all states communicate with 
each other in the sense that it is possible to  reach any state from any other state, 
via intermediate states if necessary. However, for agonist-activated channels in the 
absence of any agonist, this will usually not be the case; any shut channel state that 
can open only by binding agonist will never be able to open. In these circumstances, 
the model is said to be reducible, with an absorbing subset of the shut states which, 
once entered, can never be left. Then QFF will become singular and, hence, the 
usual formulae (see (1.7)) for matrices such as GFA are invalid. Consequently, the 
results given by Colquhoun & Hawkes (1987) for channels following a perturbation 
are mostly not usable for a jump from a finite agonist concentration to  zero agonist 
concentration. 

In this section, therefore, we discuss the behaviour of a single channel following a 
jump from a non-zero agonist concentration to  zero concentration. The jump will be 
supposed to  take place a t  time t = 0 and the behaviour before time 0 is irrelevant to  
the problem. All we need to specify is a vector of initial probabilities, p(O), whose 
i th element gives the probability of the channel being in state i at the time of the 
concentration jump. If, for example, it is assumed that the channel has been exposed 
to a constant agonist concentration for a long time before the jump, then p(0) may 
be taken to be the vector of equilibrium occupancies calculated, as in (1.2), from the 
Q matrix, Q1 say, which applies at this agonist concentration. Following the jump, 
it is supposed that the channel is held at zero agonist concentration for a very long 
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time (effectively infinity) and the matrix of transition rates which result under this 
regime will be denoted, in this section, by Q .  

In Colquhoun & Hawkes (1982, 1987), bursts of openings and shuttings were stud- 
ied by dividing the set of states into three types: the subset of open states (kA in 
number) is denoted A; the set of shut states, denoted F, was divided into B, the set of 
short-lived shut states (ka in number); and the set of long-lived shut states, denoted 
C (kc in number). Thus F = BUC. We use a similar division here, but C must now be 
defined as an absorbing set of states. This means that once the channel has entered 
the set C it can never get out again (infinitely long-lived) without binding an agonist 
molecule, so that, a t  zero agonist concentration, the submatrices of transition rates 
QCA = 0 and Qca = 0; for example, the vacant receptor, R, will belong to C (as 
long as the model does not permit spontaneous openings in the absence of agonist). 
The subset B, conversely, must contain all shut states from which opening is possible 
(A can be reached) in the absence of agonist. 

In order to  see any openings at all after the concentration falls to zero, the channel 
must either (a) already be open at t = 0, or (b) be in a shut state belonging to  the set 
B a t  t = 0. If the channel is shut (in B or C) a t  t = 0, when the agonist concentration 
falls to  zero, then no openings will be seen after t = 0 if the channel happened to be 
in a C state at t = 0, but further openings m a y  be seen if the channel happened to  
be in B a t  t = 0 (if one or more B to  A transitions occur), though there will be no 
openings if the first transition after t = 0 is a B to  C transition. 

With this definition of subsets, the jump to zero concentration is followed by at 
mos t  one burst of openings before the channel is absorbed into the set of states C 
and, in addition to  separate distributions for first latency (i.e. the time up to  the 
first opening), and for the nth open and shut times, we shall also be interested in the 
overall distributions of the length of this burst, the total open time in it, the number 
of openings in it and the overall distribution of the lengths of all the open and shut 
times in the burst. We shall also consider the total activation t ime,  defined as the 
time from t = 0 to  the end of the last opening, which is simply the first latency plus 
the burst length. 

( a )  T h e  fraction of channels that  fail t o  open after t = 0 
As in Colquhoun & Hawkes (1987), the fraction of channels in each of the k states 

at t = 0 are kept in the row vector p(O), which is partitioned into A, B and C subsets 
(with kA, kB and kc states, respectively). Thus, p(0) = [pA(0) pB(0) pc(0)]. 

Of channels that are shut (in F = B U C) a t  t = 0, the probability of being in C 
(rather than B), and therefore never opening, is 

(where U is a column vector with unit elements) and the probability of being in B is 

In order to  derive distributions for channels that were shut at t = 0, we require 
the relative probabilities of being in each of the B states given that the channel is 
shut; this gives an initial vector defined as 

Unlike the initial vectors used elsewhere, the elements of this do not sum to  1, but 
rather 

4a(O)ua = P B ( O ) ~ ~ / ( P F ( O ) ~ F )  = P(BlF) .  (2.4) 
Phil. Trans. R. Soc. Lond. A (1997) 
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Apart from these initial probability vectors, all other matrices or vectors in this 
section are derived, using the notation of Colquhoun & Hawkes (1982, 1987), from 
the transition rate matrix Q, which is obtained at zero concentration. 

Let R denote a random variable representing the number of openings in the burst. 
Then the fraction of all those channels that were shut at t = 0, which fail to open at 
all, P ( R  = O l F )  say, is given by the fraction that were in C, plus the fraction that 
were in B, but make their next transition to C (rather than A) and are therefore 
absorbed before any openings can occur, i.e. 

Also, the fraction of all channels that fail to open is 

and the fraction of all channels that produce at  least one opening is 

In the rest of this section we will obtain various distributions (i) conditional on the 
channel being shut at t = 0, (ii) conditional on it being open at t = 0 and (iii) the 
overall distribution, regardless of the initial conditions, obtained by the appropriate 
combination of the previous two. 

( b )  Distribution of the number of openings after t = 0 

(i) Shut at t = 0 

The transitions between subsets, for a channel that was in B at t = 0, could, for 
example, look as shown in (2.8). In this case, there are three openings followed by a 
final transition from B to C, from which it is unable to escape. Clearly, the channel 
must be in B at  t = 0 if it is ever to open at all. 

The probability of getting r openings (for r 2 1) is 

where eb is the 'end-of burst vector' (Colquhoun & Hawkes 1982, equation (3.3)), 
defined as 

e b  = (GABGBC + GAC)UC = ( I  - GABGBA)UA, (2.10) 

whose i th element gives the probability, conditional on being in open state i at 
present, of absorption into C and therefore never re-opening again after the current 
open time has finished. The cumulative form, the probability of observing some 
specified number, n, of openings or more, is 
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In particular, the probability of observing one or more openings when the channel 
was shut at t = 0 is 

P ( R  3 1 IF) = $a ( ~ ) G B A U A ,  (2.12) 

which, of course, equals 1 - P(01F). This follows from (2.5), noting that Gacuc + 
GaAUA = u a  (see Colquhoun & Hawkes 1982, equation (A1.7)). 

The mean number of openings (including zeros), given that the channel was shut 
at t = 0, denoted say, is thus 

M M 

~ ~ = ~ ~ P ( ~ F ) = ~ P ( R ~ ~ ~ F ) = $ ~ ( O ) G B A ( I - G ~ ~ G B ~ ) - ~ ~ A .  (2.13) 
r = O  n=l 

If, of the channels that were shut at t = 0, we consider only those that produce at 
least one opening, the probability of there being r openings is 

and the mean number of openings (pl say), given at least one opening, is thus 

(ii) Open at t = 0 

If the channel starts in A, there will be at least one opening and the probability 
of r openings in a burst is 

where 

$A(()) = P A ( O ) / ( P A ( ~ ) ~ A )  = PA(O) /~ (A)  
gives the proportion of open channels in each state at t = 0. The cumulative form is 

(iii) Overall distribution 

The overall distribution of the number of openings is obtained by combining (2.9) 
and (2.16) using P(r) = P(.F)P(rIF) + P(A)P(rIA).  Thus 

P(.) = [pA(O) + ~f?(o)Gf?A] ( G A B G B A ) ' - ~ ~ ~ ,  3 1, (2.18) 

while P(0) is given by (2.6). 
The cumulative form, the probability of observing some specified number, n ,  of 

openings or more, is therefore 

while, of course, P ( R  > 0) = 1. 
The overall mean number of openings is 

Sometimes one might want to condition on having at least one opening, in which 
case simply divide equations (2.18)-(2.20) by P (R  > 1). 
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( c )  Distributions of the lengths of openings 

Below we study the probability distributions of the lengths of various open times 
and shut times using f (t), sometimes with a subscript, to denote a probability density 
and f*(s)  to denote its corresponding Laplace transform. In deriving these it is 
natural to first derive a Laplace transform, typically denoted h*(s), which not only 
contains information about the interval of interest but usually also contains some 
probability (such as the probability of a certain number of openings in a burst). 
The transform we actually want normally refers to a conditional distribution and is 
obtained by the normalization f *(S) = h*(s)/h*(O) so that, as usual with the Laplace 
transform of a probability density function, f * ( O )  = 1 (i.e. unit total area under the 
PDF) . 
(i) Length of the nth opening in a burst with r openings 

The distribution of the length of the nth opening in a burst with r openings is 
found very much as in Colquhoun & Hawkes (1982). For channels that are shut 
initially we obtain the Laplace transform. For all openings except the last we get 
(before normalizing) 

and for the last opening r = n 

As in Colquhoun & Hawkes (1982), both these results can be subsumed in the single 
equation 

This expression will need to be normalized by h* (0) = P(r1.F) (see (2.9)) as described 
above. The PDF corresponding to f *(S) = h*(s)/h*(O) is thus 

For channels which are open initially, similar results can be obtained simply by 
replacing 4a(0)GBA by #A(O) and P ( r lF )  by P(rIA) in (2.21)-(2.22); to get the 
overall distribution, regardless of initial conditions, replace them instead by pA(0) + 
PB(O)GBA and P(r). 

(ii) Length of the nth opening in any burst 
The distribution of the length of the nth opening in any burst for which the channel 

is initially shut, found by summing (2.21) over r 2 n,  will be given by 

This must be normalized by hi(0) = P ( R  2 nlF) (see (2.11)) to give the corre- 
sponding PDF as 

For channels which are open initially, similar results can be obtained simply b i  
replacing 4a(0)GaA by $A(O) and P ( R  2 nlF) by P ( R  2 nl A) in (2.23)-(2.24); 
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to get the overall distribution, regardless of initial conditions, replace them instead 
by pA(0) + pB(0)GaA and P ( R  3 n). In particular, for the overall distribution, the 
Laplace transform in (2.23) becomes 

(iii) Overall distribution of open times 
If we consider the distribution of all open times, regardless of position or initial 

conditions, then we simply sum the functions in (2.25), giving 
m 

h*(s) = C h,(s) = [pa(O) + ~ n ( O ) G a a l ( I  - ~ a o ~ a a ) - ' ( s I -  Qaa)-'(-Qaa)~a. 
n=l 

(2.26) 
To normalize, we divide by 

which is, from (2.20), the mean number of openings per burst. Thus, the final PDF 
for all open times after t = 0 is 

From the spectral expansion of the matrix exp(QAAt), we see that all of these 
distributions are mixtures of exponentials whose time constants are the reciprocals 
of the kA eigenvalues of -QAA; the areas attached to each component will differ 
according to the various vectors by which exp(QAAt) is pre- and post-multiplied in 
the above expressions. 

(iv) Mean open times 
The mean open time for any of these distributions is obtained simply by replacing 

the factor exp(QAAt) (-QAA) by (-QdA)-' in the corresponding density function 
(2.22), (2.24) or (2.27). For example, from (2.27), the mean overall open time is 

(d )  Distributions of the lengths of shut times 
There will, of course, be no shut times to measure unless there is at least one 

opening. In equilibrium records, a burst with r openings will have r - l gaps-within- 
burst to be measured. The same will be true for a burst following a jump to zero 
concentration if we define the burst as starting at the beginning of the first open 
time and finishing at the end of the last opening before absorption into C. When the 
channel is shut at t = 0, the burst will be preceded by a shut period known as the 
latency to the first opening. When the channel is open at t = 0, the latency will be 
taken to be zero. 

(i) Length of the nth shut time in a burst with r openings 
When the channel is shut at t = 0, the Laplace transform of this distribution is 

or, more conveniently, 
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This must be normalized with (see (2.9)) h*(O) = P(rlF), so the corresponding PDF 
is 

For channels which are open initially, similar results can be obtained simply by 
replacing $B(0)GaA by $A(O) and P(rlF) by P(rIA) in (2.29)-(2.30); to get the 
overall distribution, regardless of initial conditions, replace them instead by pA(0) + 
PB(O)GL?A and P(r). 

(ii) Length of the nth shut time in any burst 

The Laplace transform of the distribution of the nth gap in any burst, assuming 
the channel is shut at t = 0, can now be found by summing (2.29) over r 3 n + 1. 
This gives 

which, on normalization by h*(O) = P ( R  3 n + llF) (see (2.11)), gives the corre- 
sponding PDF as 

fn(t) = $B(~ )G~A(GABGBA)" -~GAB ~ ~ P ( Q B B ~ ) Q B A ~ A / P ( R  3 n + IIF),  n 3 1. 
(2.32) 

For channels which are open initially, similar results can be obtained simply by 
replacing $B(O)GBA by $A(O) and P ( R  3 n + 113) by P ( R  3 n + 11 A) in (2.31)- 
(2.32); to get the overall distribution, regardless of initial conditions, replace them 
instead by pA(0) + pa(0)GaA and P ( R  2 n + 1). In particular, for the overall 
distribution, the Laplace transform in (2.31) becomes 

(iii) Overall distribution of shut times within a burst 

If we consider the distribution of all shut times within a burst (which does not 
include the first latency), regardless of position or initial conditions, then we simply 
sum the functions in (2.33)) giving 

m 

h*(s) = h:(s) = Ipa(0) + ps(0)GoaI (I - GABGBA)- 'GABG~A(~)uA.  (2.34) 
n=l 

To normalize, we divide by 

which, using (2.19) and (2.20), simplifies to 

Finally, the PDF is 

Phil. Trans. R. Soc. Lond. A (1997) 



Properties of single ion channel currents 1755 

(iv) Mean shut times 
The mean shut time for any of these distributions is obtained simply by replacing 

the factor exp(Qaat)QaA by (-Qaa)-lGaA in the corresponding density function 
(2.30), (2.32) or (2.36). So, for example, from (2.36), the mean overall shut time 
within a burst is 

Ball et al. (1989) considered channel behaviour following a jump, assuming the 
channel was shut initially. They were mainly concerned with the mean of the nth 
open time and the mean of the nth shut time as functions of n but, in the process, 
obtained equations for the probability densities equivalent to (2.24) and (2.32). 

(v) The latency to the first opening 
If the channel is shut at t = 0, there will be a shut time before the start of the first 

opening, if any. Its distribution when preceding bursts with r openings is similar to 
(2.30) with n = 0, omitting the factor GaA(GAaGsA)n-lGAa, and has PDF 

Similarly, its PDF, regardless of the number of subsequent openings, is similar to 
putting n = 0 in (2.32), again omitting the factor GsA(GAaGaA)n-lGAa, and so 
we get the obvious result 

The latency is, of course, zero if the channel is open at t = 0. 
As above, the mean of either of these two distributions is obtained simply by 

replacing the factor exp(QBBt)QaA by (-QaB)-lGBA in the corresponding density 
function. 

From the spectral expansion of the matrix exp(Qaat), we see that all of these 
distributions of shut times are mixtures of exponentials whose time constants are 
the reciprocals of the ka eigenvalues of -Qaa; the areas attached to each component 
will differ according to the various vectors by which exp(QBat) is pre- and post- 
multiplied in the above expressions. 

( e )  The length of the burst 
As discussed above, we define the burst as starting at the beginning of the first 

open time and finishing at the end of the last opening before absorption into C. 
For a channel which is shut at t = 0, we ignore the first latency and note that 
the result is the same as the conventional burst length PDF (Colquhoun & Hawkes 
1982, equation (3.16)), except that the initial vector is taken as $a(0)GBA. Thus, 
the Laplace transform is given by 

This must be normalized by h*(O) = P ( R  3 1jF) and inverted, as in Colquhoun & 
Hawkes (1982), to give the PDF 
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This is because a burst consists of a sojourn in I = AU B, starting and ending in the 
open states, A (see Colquhoun & Hawkes 1995a, 5 13.4, for an elementary exposition). 
This is a mixture of exponentials whose time constants are the reciprocals of the ka 
eigenvalues of -QEE. 

For channels which are open at t = 0, similar results can be obtained simply by 
replacing $a(0)GaA by ~ A ( O )  and P ( R  3 1IF) by P ( R  3 lid) in (2.40)-(2.41); to 
get the overall distribution, regardless of initial conditions, replace them instead by 
PA(O) + pa(O)Gm and P ( R  3 1). 

The mean of any of these distributions can be obtained from (2.41) by replacing 

which is mean total open time per burst plus mean total shut time per burst. More 
simply, the mean can also be obtained by replacing exp(QEEt) in (2.41) by 
(not forgetting then to take the AA submatrix of the result) and using the appro- 
priate initial vector and normalising factor as discussed in the previous paragraph. 

(f) The length of the entire activation 
We define the length of the activation as the time from the moment of the con- 

centration jump (t = 0) until the end of the last opening. Thus, 

length of activation = first latency + burst length. 

Of course, if the channel is open at t = 0, the first latency is zero and the length of 
activation and burst length are the same; the distributions will, therefore, be identical 
in these circumstances. 

When the channel is shut at t = 0, the results on burst length are simply modified 
to include the first latency. The Laplace transform becomes 

and the corresponding normalized PDF is 

Thus the BA subsection, rather than the AA subsection, of exp(QEEt) is needed in 
this case. 

To get the overall distribution, regardless of initial conditions, combine the two 
cases to give 

\ I 

which is normalized by h*(O) = P(R 3 1) and inverted to give 

Again, if we use a spectral expansion, we see that all of these distributions are 
mixtures of exponentials whose time constants are the reciprocals of the kE eigen- 
values of -QEE. Thus, the time constants are the same as those for the burst length 
distribution; only the relative areas of the components differ. 

Clearly, from the definition preceding (2.42), we have 

mean length of activation = mean latency + mean burst length, 

where algebraic expressions for the two means on the right, under appropriate con- 
ditioning, are given in the two previous subsections. More directly, simply replace 
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exp(QEat) by in (2.43) or (2.45) (not forgetting then to take the appropri- 
ate submatrix, BA or £A, of the result). Thus, for example, the mean overall total 
activation time, assuming it is non-zero, is obtained from (2.45) as 

(g )  The macroscopic time course 
The macroscopic time course following a jump is given by 

I ( t )  = NyP(channe1 open at t) = Nyp(0) exp(Qt) (2.47) 

where y is the conductance of the open channel and N is the number of channels. 
From the spectral expansion of exp(Qt) it follows that, in general, the time course 
is a mixture of k - 1 exponential components whose time constants are reciprocals 
of the eigenvalues of -Q, omitting the zero eigenvalue. 

However, at zero concentration, this result can be simplified. In the last two sec- 
tions we have partitioned the matrix Q into QEE, QEC, QC& and Qcc. But, at zero 
agonist concentration, the set C is absorbing, so QC& = 0. Thus, Q has a 'block 
upper triangular' form. This implies that the eigenvalues of Q itself will be the same 
as the kE eigenvalues of QEE, plus the kc eigenvalues of Qcc. Furthermore, it turns 
out that the components that have eigenvalues of Qcc have zero amplitude in the 
macroscopic response, so the macroscopic response to a jump to zero concentration 
will have only Ice components with time constants that are the reciprocals of the 
eigenvalues of -QEE, rather than the k - 1 components that the macroscopic jump 
will have in general. Thus, the macroscopic time course will have the same time 
constants as the distributions of burst length and of activation length (see also 5). 
The reason for this is that, at zero concentration, a channel which is open at time t ,  
and therefore contributing to the macroscopic current, must remain within the set of 
states E throughout the interval [O, t).  In this situation, the general expression (2.47) 
can be replaced by 

I ( t )  = N ~ P E ( O ) [ ~ X P ( Q E E ~ ) I E A ~ A .  
This point is illustrated, and discussed further, in 5. 

( h )  Distribution of total open time per burst 

For channels which are shut at t = 0, the PDF of the total open time within a 
burst can be found from the obvious modification of Colquhoun & Hawkes (1982, 
equation (3.22)). Thus, 

where 

VAA = QAA + QABGBA. 
The mean of this distribution is 

As usual, for channels which are open at t = 0, similar results can be obtained 
simply by replacing $a(0)GaA by $A(O) and P ( R  2 IIF) by P ( R  3 11A) = 1 
in (2.49) and (2.51); to get the overall distribution, regardless of initial conditions, 
replace them instead by pA(0) + pa (0)GaA and P ( R  2 1). 
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Clearly, all of these distributions are mixtures of exponentials whose time constants 
are the reciprocals of the kA  eigenvalues of -VAA. 

3. Response of single channel ta a pulse of agonist 

In this section, we consider the problem of describing how a single channel responds 
to a, pulse of agonist. Specifically, we suppose that a pulse of agonist at a fixed 
non-zero concentration is applied over the time interval [O,T) so that, within this 
period, the matrix of transition rates, Q', is constant. At this concentration, all 
states communicate so that the matrix is irreducible. We assume that the agonist 
concentration is zero both before and after the pulse, with transition rate matrix (aB. 
At zero concentration there is an absorbing subset of shut states, C, as described in 
$ 2 .  

We consider two possible options about what is recorded: we can start to recard 
the channel behaviour from the end of the pulse, in which case the theory of the 
preceding section applies with a suitable choice of initial conditions, or we can start 
recording from the start of the pulse. The advantage of the first approach is that the 
theory is very much simpler and, if the pulse is short, little information is lost by 
ignoring what happens within the pulse. If, however, the pulse is long and several. 
openings occur within the pulse then it would be more efficient to start measuring 
from the start of the pulse. Furthermore, when we come to deal with the problem of 
time interval omission, in $4, it turns out that the theory is then more straightforward 
if we start to record from the start of the pulse. 

It is supposed that the pre-pulse period, at zero concentration, is sufficiently long 
to ensure that the channel has reached the absorbing set, C, so that the channel is 
shut (indeed, must be in C) at t = 0 and the occupancies af sets A and B are zero, 
so the partitions of the initial probability vector satisfy 

( a )  Recording from the end of the pulse 
If we start to record from the end of the pulse so that, for example, the latency to 

the first opening would be the duration of the time interval from T up t~ the start 
of the first opening after T ,  then we can simply apply the theory of 3 2, replacing the 
matrix Q used throughout that section by Q'. We also need to replace p(Q) of that 
section by the probability vector 

= P @ )  exp(QIT), ( 3 4  
since the set of occupancy probabilities at the end of the pulse becomes the initial 
probability vector of the jump to zero concentration which occurs at that time. It is 
useful to think of restarting the clock at  the end of the pulse so that this paint is 
treated as time zero as far the future channel behaviour is concerned. 

( b )  Recordhg from the start of the pulse 
If there is a high probability of openings occurring during the pulse, i.e. the pulse 

is relatively long compared with average first latency, it should be more informative 
to record from the start of the pulse. Relatively simple results can be found for the 
probability distributions of (a) the first latency, (b) the total length of the activation 
from t = 0 to the end of the last opening and (c) the burst length, and these are 
given here. 
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Figure 1. The upper trace shows a pulse of agonist concentration switched on at  time 0 and off 
at  time T. The lower trace shows a response in which there are just two openings, one of which 
is in progress at  the end of the pulse, and continues to be open until time t4. The channel then 
closes, never to re-open. The previous times at  which opening or closing takes place are denoted 
tl,  t:! and t g .  

Other distributions (number of openings, length of nth opening, etc.) are more 
complicated, even without time interval omission, and are discussed in Merlushkin 
& Hawkes (1995~);  these distributions can be calculated numerically. The difficulty 
comes in taking care of all possible intervals, open or shut, in which the change 
of agonist concentration at the end of the pulse might fall. Note, however, that it 
is not difficult to write down the complete likelihood of the process because then 
we know precisely in which interval the end of pulse falls. The likelihood is very 
useful for estimating parameters of the model, see, for example, Colquhoun et al. 
(1996). Consider the simple example illustrated in figure 1, in which there are just 
two openings (beginning at times t l ,  t.3 and ending at times t2 ,  tl) with the end of 
the pulse taking place at time T, while the second opening is in progress. Then the 
likelihood of observing this series of events is 

In this result, the superscript (0 or 1) indicates which Q matrix was used in the 
relevant expression. 

(i) The first latency distribution 

This is an easy generalization of the single jump case. As the channel is assumed 
shut at t = 0, the PDF of the time to first opening (conditional on there being at 
least one opening) can be written as 

where pF(0) is the initial distribution over the shut states and GFA(t) is a matrix 
function, such that its i j th  element gives the density (conditional on starting in state 
i at time 0) of staying in the subset of shut states up to time t and making a transition 
to open state j at that time. Because of the changing value of the transition rates, 
we have different expressions for GFA(t), depending on whether the first opening 
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occurs during or after the end of the pulse. Thus, 

where, as in (l.3), 

= exp(Q?,t)Ql;",, m = 

The second expression in (3.3) represents the matrix product of the probability of 
survival in the set of shut states, F, throughout [0, T)  and a similar probability of 
survival in F for a further period of duration t - T,  followed by transition to an open 
state. 

Note that Q%, is singular, but exp(Q:,t) can still be evaluated and the first 
latency PDF obtained. However, it is simpler to use the result in (3.5), which follows 
from the fact that, at zero concentration, C is an absorbing subset, so &gA = 0 and 
Q;, = 0. Therefore, we can write 

Thus we have, for first openings that begin within the pulse, 

For t 3 T,  we can give an alternative expression which makes use of the fact 
that the channel must exist in the set of B states at time T if it is ever to open 
subsequently. Thus, 

or, when the system is entirely in C at t = 0, so pa(0) = 0, as will usually be the 
case, this becomes 

This shows explicitly that, for t 3 T,  the time constants are the reciprocals of the kB 
eigenvalues of -Q&, as in 5 2. In this case, because &ga = 0, the Q%, matrix will 
be 'block upper triangular' and kB of the kF eigenvalues of Q;, will be identical to 
the ka eigenvalues of Q&. The remaining kc eigenvalues of Q;, will be the same 
as those of Q&, but these will have zero area in the first latency PDF if the PDF is 
calculated directly from exp(Q'$,t), as in (3.3). For t < T,  however, the distribution, 
using (3.6), can be expressed as a mixture of kF exponentials whose time constants 
are the reciprocals of the eigenvalues of -Q&,. 

(ii) The probability of observing at least one opening 
The probability of observing at least one opening is given by 
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Because of the form of GFsl(t), defined in (3.3), we naturally do the integral in two 
parts, from 0 to  T and from T to  oo. For the second part of this we must take care 
because, when the concentration is zero, QgF is singular and it is better to  make 
use of the fact that,  in these circumstances, once the set of states C is reached, the 
channel can never open again. Thus, GgA( t  - T)  can be calculated as in (3.5), so 
that we obtain 

where, as Colquhoun & Hawkes (1982), we define GkA (with the argument t omitted) 
as 

(iii) The special case of a simple step to zero concentration 
Suppose now that before time 0 there was a non-zero agonist concentration and a 

jump to  zero concentration occurs at time t = 0. In this case, assuming the channel 
is shut at t = 0, so pF(0)uF = 1, 

which, from (3.5), can be written as 

in agreement with equation (2.39). 

(iv) The special case of a simple step from zero concentration 
For the case of a simple step from zero concentration to  a non-zero concentration, 

P ( R  3 l ) ,  calculated from (3.10) with T + oo, reduces to  

so the PDF in (3.2) reduces to  the form given in Colquhoun & Hawkes (1987, equation 
(6. l l ) ) ,  namely 

except that in this case, pF(0)u3 happens to  be equal to  1. 

(v) The distribution of the total activation time 
Total activation time is the time from the start of the pulse to  the end of the last 

opening before the channel is absorbed into the set C; again, this will, of course, 
be conditional on there being a t  least one opening. It is slightly more complicated 
than the first latency distribution but superficially similar. The PDF of the length 
of activation, fLa(t), can be written as 

where GF3(t) is defined in (3.16)-(3.18) below and 'c$ is a column vector whose 
elements give, for each initial shut state, the probability that the system (under the 
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zero agonist regime) is absorbed into the set C without any further openings. This is 
clearly given by 

where, similarly to GgA above, Ggc = (-Qg,)-'Qg,. 
The slightly complicated bit in (3.14) is the definition of !PFF(t). For t < T,  its 

i j th  element gives the density (conditional on starting in shut state i at time 0) of a 
transition from open to shut at time t ,  after which the channel remains in the set of 
shut states up to time T ,  at which point it is in shut state j .  Therefore, 

For t 3 T,  we need simply the (renewal) density, again conditional on shut state 
i at time 0, of a transition from the open set to shut state j at time t. Then 

Note that, for this to happen, the system cannot have been in the set C at time 
T otherwise it would never open again (and the activation length would be less 
than T and thus dealt with by the previous case above); similarly, it must not enter 
C throughout the time interval [T,t). Thus, the expression above can be written 
alternatively as 

where the subset E is defined as E = A U B. 

(vi) The distribution of the burst length 

The burst is defined as the interval from the start of the first opening to the end 
of the last opening, so that the burst length is such that 

length of activation = first latency +burst length. 

First, we shall find an expression for the joint probability density of the first latency 
and the burst length conditional, as usual, on there being at least one opening. This 
can be expressed somewhat like equation (3.14) as 

where t l  refers to first latency and t to burst length. As with the matrix !PFF(t), 
the definition of the matrix density EFF(tl ,  t) takes different forms, depending on 
whether things happen before or after the end of the pulse. 

(1) When tl  + t < T,  so the total activation is completed within the pulse, the 
i j th  element represents a bivariate probability density of the event that, conditional 
on the channel being in shut state i at time 0, the first transition to the open subset 
occurs at time t l ,  there is a transition from open to shut states at time t l  + t  and the 
channel remains within the set of shut states from then to time T ,  at which point it 
is in shut state j .  Then 

t) = + F A ( ~ ~ ) [ ~ X P ( Q ~ ~ ) I A A Q $ ~  ~XP(Q%T - t - t d ) .  (3.20) 

(2) When t l  + t 2 T,  so that activation finishes after the end of the pulse, the i j th  
element of the matrix represents a bivariate probability density of the event that, 
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Figure 2. The figure illustrates the domains in which the three analytical forms of the joint 
matrix density obtain, leading to the three matrix integrals II, whose corresponding subscripts 
(]C = 1 , 2 , 3 )  are marked on the figure. 

conditional on the channel being in shut state i at time 0 ,  the first transition to the 
open subset occurs at time t l  and there is a transition from open to shut states at 
time t l  + t ,  with the channel entering shut state j .  

Then for t l  < T 6 tl  + t ,  so that the burst straddles the end of the pulse, and 
noting that the channel must not enter the set C during the time interval between 
the end of the pulse and the end of the burst, we obtain 

(3) When t l  2 T, so the first opening occurs after the end of the pulse, the 
definition is the same as for case 2 above, but we have the simpler expression 

Thus there are three regions, represented in figure 2, in which the matrix function 
takes different forms. 

To get the marginal density of burst length we must integrate the joint density 
(3.19) with respect to t l ,  giving 

where 

Since the bivariate density has three different analytical forms, this integral can be 
written as 

E r r ( t )  = I1 ( t )  + I2 ( t )  + I3 ( t )  , for o t < T, 

c " ~ ( t )  = I2 ( t )  + 13( t ) ,  for t 2 T. (3.25) 

The I functions are integrals over the respective domains where, as can be seen 
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The functional forms for the three integrands above are given in (3.20)-(3.22). Ex- 
plicit results for these are somewhat tedious and are given in Merlushkin & Hawkes 
(1995~) .  We merely note here that, for t 2 T, the resulting density is a mixture of 
kE exponential terms whose time constants are the reciprocals of the eigenvalues of 
-Q$&. Programs for evaluating them are available. 

We note that this approach yields an alternative derivation of the total activation 
time, because PFF(t), which was given in (3.16)-(3.18), clearly satisfies 

4, Allowing for time interval omission 

It is well known that in experiments, due to  limitations of the equipment, we 
cannot detect short openings and shuttings of a channel; the so-called time interval 
omission problem. This is taken into account by defining an 'apparent opening' as a 
period which begins with a sojourn in the set of open states, A, in excess of some dead 
time, <, and possibly followed by an alternating series of shuttings and openings in 
which the shut times are all less than J .  The apparent open time ends at the start of 
a period in the shut states, F, in excess of which forms the beginning of a similarly 
defined 'apparent shut time'. The treatment of this problem has been considered 
by several authors including Ball & Sansom (1988), Hawkes et al. (1990, 1992) and 
Jalali & Hawkes (1992). The apparent distributions are often considerably different 
from those predicted by the classical theory which does not take these omissions into 
account. 

( a )  Recording from the start of the pulse 
In this section, we give expressions for the distributions of apparent first latency 

in a form similar to that for the classical case treated in the previous section. Of 
course, the meaning of constituent parts of the expressions and their computation 
become more complicated. The distribution of the apparent length of activation is 
somewhat more complicated still. Therefore, we do not present explicit results here 
and refer interested readers to Merlushkin & Hawkes (1995~)  for details. 

We assume that the channel remains entirely in the set of shut states before the 
beginning of the pulse and, therefore, an apparent shut sojourn is in progress at time 
0, the channel being in one of the shut states. The probabilities of being in each of 
the shut states are given by the elements of the vector pF(0). 

(i) The distribution of the apparent first latency 
The apparent first latency is defined as the time interval from the beginning of the 

pulse up to the beginning of the first apparent opening of the channel. We consider a 
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PDF conditional on there being at least one apparent opening. In a manner similar 
to equation (3.2),  we can write 

~ A F L ( ~ )  = PF(o)&FA(~)uA/P(R 2 l), (4.1) 

where R is a random variable denoting the number of apparent openings before 
absorption into the set of states C and & ~ d ( t )  is a matrix such that its i j t h  element 
gives the density (conditional on starting in shut state i at time 0) of having no 'long' 
sojourns (of length 3 J) in open states throughout the time interval [0, t ) ,  making 
transition from shut to  open states at time t ,  and staying in the set of open states 
for at least J following this transition so that, at time t + J,  the channel is in open 
state j. 

Due to the step-wise nature of the underlying process, we have different expressions 
for & ~ d ( t )  for different time intervals. First, 

= ( t ) ~ : ~  ~ x P ( Q $ ~ s ) ,  0 G t < T - S, (4.2) 

where we denote by FR1(t) the matrix introduced in (1.13), whose computation is 
discussed in the Appendix, derived from the generator matrix Q1 instead of Q .  Note 
that, as implied in the above equation, we assume that the pulse length, T ,  is greater 
than the dead time, J. 

For T - S G t < T, the expression is slightly more complicated since the open 
sojourn which follows the first apparent shut time has to be split into two subinter- 
vals, before and after the end of pulse, where the generator matrix of the underlying 
process is equal to  Q1 and Q O ,  respectively. Then 

For t 3 T ,  the interval where the process has 'no resolvable open sojourns' starts 
at time 0 and terminates after the end of pulse. We now have to split this interval 
in a manner similar to  that above to operate on homogeneous subintervals. At the 
change point T, we can either be in a shut state or within a 'short' open sojourn 
which started a t  time (T - ro) ,  0 G ro < J,  and finishes at time T + r l ,  0 6 rl < S- ro. 
Adding up all these possibilities, we obtain an expression for the density of interest 

X Qgd exp(Q%,J), for t 3 T. (4.4) 

The matrix function FRO(t) is similar to FR1 (t),  but is based on the generator matrix 
QO.  Although the appearance of this last part of & ~ * ( t )  is messy, it involves only 
integrations over intervals of length < J and its evaluation by numerical integration 
is simple. For a short interval with an integrand which does not change much, we 
found the simple Trapezium Rule quite adequate. 

(ii) The probability of observing at least one apparent opening 
The probability of observing a t  least one apparent opening can be obtained in the 

same way as for the classical case, i.e. by integrating the numerator of fAFL(t) in 
(4.1) over t. Here we approach it differently and calculate P(R = 0) = 1 - P(R 3 1) 
instead. 
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Let us introduce a column vector of probabilities, similar to (3.15). Elements of 
this vector give, for each initial shut state, the probability that the system (under 
the zero agonist regime) is absorbed into the set C without any prior 'long' openings. 
This is clearly given by 

where, by analogy with the standard FRO(t), matrix function 'RO(t) gives 'survival' 
probabilities of having no 'long' sojourns outside B (i.e. in A U C) during [0, t )  and 

B ~ O  = =m dt 'R0 ( t )  . (4.6) 

Now, making use of this new probability vector, the probability of having no apparent 
openings can be calculated as 

This expression simply adds up probabilities of having no apparent openings and, 
at time T, the underlying process either being in the shut subset or being within a 
'short' opening which starts at (T - ro) and finishes at (T + r l) .  

(iii) The distribution of the apparent length of an activation 
Apparent length of activation is defined as a time interval from the beginning of 

the pulse up to the end of the last apparent opening before absorption. Again, in a 
superficially simple way, we can write 

The definition of the matrix function & ~ ~ ( t )  is similar to the definition of !PFF(t) 
for the classical case, with 'apparent' events replacing the corresponding classical 
transitions and sojourns. Explicit formulae for this density can be obtained using 
similar arguments to those for &FA(t). However, they are cumbersome and are not 
included in this paper but can be found in Merlushkin & Hawkes (1995~).  

(iv) Distributions of other characteristics 
Other features that we have considered earlier, such as the distributions of burst 

length, number of openings and the length of the r th  opening are much more com- 
plicated in the case of time interval omission and have not been attempted. Note, 
however, that it is still possible to compute the complete likelihood of the process in a 
manner similar to the method described in Colquhoun et al. (1996), which generalizes 
the example without time interval omission discussed in relation to figure 1. This 
uses semi-Markov kernels, essentially rather more complicated versions of GAF(t) 
and GFA(t) defined in (1.3), which are discussed in Merlushkin & Hawkes (1995a, 
1997). 

( b )  Recording from the end of the pulse 
It might be thought that, as in 5 3, it would be easier to deal with the theory to 

describe what happens if you start recording from the end of the pulse instead of the 

Phil. Trans. R. Soc. Lond. A (1997) 



Properties of single ion channel currents 1767 

beginning. Indeed, all the problems that make the earlier part of this section hard 
disappear, because the agonist concentration would be constant over the observation 
period. However, we get another problem instead. The problem now is that, when 
dealing with apparent times, we need to know at the time the concentration changes 
whether an open period, or a shut period, appears to be in progress, and for how long; 
the sort of thing that makes equation (4.4) complicated. The advantage of starting 
at the beginning of the pulse is that we know the channel is shut, both really and 
apparently, at t = 0. 

Progress on this problem, and the related one of a single jump in concentration, 
needs some consideration about how the signal is to be processed in the neighbour- 
hood of the jump, both before and after. 

( c )  Response to a single jump 

We now consider briefly the effect of time interval omission on the case of a single 
jump, mentioning two special cases. 

(i) The special case of a single jump from zero concentration 
In this case, we know that the channel must be in the set of shut states at t = 0 and 

has been there for some time. With non-zero agonist concentration after the jump, 
at least one apparent open time is certain to occur (indeed there will be infinitely 
many, so that the burst length and total activation will be infinite). Then the latency 
to the first opening has PDF given by (4.1), with P ( R  2 1) = 1, and with &,~( t )  
given by (4.2) for all t 2 0. In other words, 

Following Hawkes et al. (1990, equation (3.2)), we can replace the matrix function 
GAF(t) defined in (1.3) by 

and let GAF be replaced by 

Similar results are obtained by interchanging A and 3. 
Then the distribution of the nth apparent shut time has PDF 

Similarly, the distribution of the nth apparent open time has PDF 

f (t) = ~F(O)(~G:,"G$,)~-~~G:~~G;,(~)U~, t 3 5, n 2 l. (4.13) 

Notice that, unlike the apparent open times or subsequent apparent shut times, 
the first apparent shut time (or apparent latency) may take values less than the 
deadtime, I. This is because, with zero concentration before the jump, we are sure 
that the channel is shut initially and do not require an initial sojourn in 3 to be 
greater than in order to convince us that we have an apparent shut time in progress. 
Consequently, the density fAFL(t), see equation (4.9), depends on ,R1(t) and its 
asymptotic form will depend on the asymptotic form of ,R1(t) and therefore will 
normally be used for t > 2t (see Appendix). However, all other apparent open time 
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or shut times must start with a true open (or shut) time greater than J and so the 
probability densities f (t) in (4.12) and (4.13) depend on FR1 (t - J) or A ~ l  (t - 5 ) .  
These R matrices have asymptotic approximations which will normally be used for 
u = t - J > 2[ and hence f (t) has an asymptotic form applied for t > 31. 

(ii) Mean apparent sojourns 
Means of apparent shut times or apparent open times may be obtained, for exam- 

ple, by replacing eG$A(t) or eGiF( t )  by appropriate constant matrices, respectively 
MkA and MAF, say, as in Colquhoun et al. (1996). Formulae for these matrices 
may be calculated as shown in the Appendix, replacing the general matrix Q by the 
particular matrix, here denoted Q1. 

Ball et  al. (1989) showed that the nth apparent mean has the form 

where N, is the minimum of the number of open gateway states and the number of 
shut gateway states. The above result holds for both apparent shut and apparent 
open times with the same pi, which are the non-zero eigenvalues of "G&,"GL,, 
from using the spectral expansion of the term (eG&AeGiF)n-l which occurs in both 
(4.12) and (4.13); the constants wi will, however, be different. Thus, if the spectral 
expansioil is 

i=l 
substitution into (4.12) yields the form (4.14) for the mean of the nth apparent shut 
time with 

wi = pF(0)AiM~,uA,  i = 1 to  N,; (4.16) 
substitution into (4.13) yields the same form (4.14) for the mean of the nth apparent 
open time, but with the weights now given by 

Note that one eigenvalue, say pl, is always unity and the others have modulus less 
than 1, so that the equilibrium mean value is given by m, = lim,,, m, = wl. 

(iii) Jump from non-zero concentration 
As mentioned above, in connection with recording from the end of a pulse, con- 

siderable complications arise when the agonist concentration is non-zero before the 
jump. You need to keep track of whether the channel is apparently open or appar- 
ently shut at the time of the jump, and for how long. Merlushkin & Hawkes (19958) 
obtain the distribution of the apparent first latency. 

In the case where the agonist concentration is zero after the jump, they also ob- 
tain the distribution of total apparent activation. The results are far too complex to 
present here, but we remark that software to  compute these distributions numeri- 
cally has been developed. In this case also, or any other situation where there is an 
absorbing set of shut states C after the jump (for example due to desensitization), 
distributions of the nth apparent open time and nth apparent shut time, generalising 
equations (2.24) and (2.32) to the time interval omission situation, can be found by 
methods used for studying bursts in Hawkes & Merlushkin (1996), or Merlushkin 
(1996). 
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Figure 3. Mechanism used for numerical examples. The open channel corresponds to the single 
state 1, the other four states correspond to a shut channel. Agonist binding steps are needed 
to move from state 5 to state 4 and from state 4 to state 3, the reverse transitions being the 
result of dissociation. All other transitions are the result of conformation changes. The values 
for the rate constants used for the calculations are k+' = 5 X 106 M-' S-', k-1 = 4.7 S-', 

k + ~  = 8.4 S-', k-D = 1.8 S-', a = 916 S-' and /3 = 46.5 S-'. 

5. A numerical example 

To give a simple numerical example, we consider the mechanism discussed in 
Colquhoun & Hawkes (1995c), which was proposed for the NMDA receptor by Lester 
& Jahr (1992), and illustrated in figure 3. It has four shut states and only one open 
state, so there are no correlations between the duration5 of successive intervals. It 
is, therefore, too simple to account for most single channel results although it can 
describe the time course of macroscopic currents quite well. There are two sequential 
bindings of agonist molecules (A) to the shut receptor, to produce A2R, which may 
then either open (to A2R*), or enter the long-lived shut ('desensitized') state, A2D. 
For the purposes of this paper, we have modified the rate, a, at which the open state 
shuts, by a factor of ten, so that open times are much shorter and the effect of time 
interval omission can be seen more clearly. 

The matrix of transition rates is given algebraically by 

where Q has been expressed as a function of the agonist concentration, X. If we take 
X = l mM, and use the rate constants given in the legend of figure 3, we get an 
irreducible matrix of transition rates 

where the timescale is measured in milliseconds, so Q has units of ms-l. 
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At zero concentration, we get a reducible matrix 

where we have also shown the partition into the three sets of states. There is one open 
state, A = {l); at zero concentration, C = {4,5) is an absorbing set of states, R and 
AR, because at least one binding step is needed to reach state 3 (A2R) which would 
allow the possibility of opening by a subsequent conformation change. This binding 
is clearly impossible in the absence of agonist. On the other hand, it is possible to 
reach the open state from set B = {2,3), i.e. from A2R or A2D, even in the absence 
of agonist. 

( a )  Channel behaviour after a jump to zero concentration 
We will use the above mechanism to illustrate the results of 52. Supposing that 

we pre-equilibrate with 1 mM agonist, then the matrix Q1 applies before time zero, 
so we take the corresponding vector of equilibrium probabilities as the initial vector 
at the time of the jump; 

again shown partitioned into pA(0), pB(0) and pc (0). On average, 81.6% of channels 
are in the 'desensitized' state. Then the various initial probabilities calculated from 
these, as given by (2.1)-(2.4) and following (2.16), are 

with conditional probabilities 

$ ~ ( 0 )  = [l], q5~(0) = [0.82326 0.176411. 

Thus, initially, the channel is highly likely to be shut, but in subset B (especially 
state 2, AzD) rather than C, and hence potentially able to open after the jump to 
zero agonist concentration. 

As in 5 2, the remaining calculations, relating to behaviour after the jump, are made 
on the basis of the matrix of transition rates Q = QO. The transition probability 
matrices, calculated as in (1.12), are 

GAB reflects the fact that shutting is just a transition from state 1 to state 3. Also, 
the only way to leave set B is via state 3 (A2R), moving to state 1 (opening) with 
probability 0.83184 and dissociating to state 4 (AR) with probability 0.16816, and 
this is true whether the channel starts in state 2 or in state 3 (so that the rows of 
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Table 1. 

expected number 
condition P ( n o  openings) P ( a t  least one opening) o f  openings 

shut initially P ( R  = O F )  = 0.16843 P ( R  I I F )  = 0.83157 E(R1.F) = 4.945 
open initially P ( R  = OIA) = 0 P ( R  2 1 A )  = l E ( R 1 A )  = 5.947 
overall P ( R  = 0 )  = 0.16694 P ( R  2 1)  = 0.83306 E ( R )  = 4.954 

GB* are identical, as are those of Gat) The end-of-burst vector, given by (2.10), is 
just the singleton 

eb = [0.16816]. 

This contains the same probability as in Gac, because the only way to get from A 
to C without re-opening is to make the series of transitions 1 + 3 (. . . 3  + 2 + 3 . S )  

3 + 4, where there may be any number of 3 + 2 + 3 oscillations within the set B 
between first entering state 3 and finally leaving it for state 4. 

(i) The number of openings 

The expected number of openings, and the probability of seeing any at all, after 
the jump can be found under various initial conditions from (2.5)-(2.7), (2.12)-(2.15) 
and (2.20). They are shown in table 1. 

So it is quite likely that there will be some openings after the jump; on average, 
about five or six. Note that the mean number of openings conditional on at least one 
occurring, pl from (2.15), is 5.947, the same as E(RIA), because a consequence of 
having only one open state is that, as soon as the first opening occurs, the future 
behaviour is independent of the situation at time zero. 

Because there is only one open state, the probability distribution of the number 
of openings, from (2.9), (2.16) or (2.18), is a modified geometric distribution of the 
form 

where q = 0.83184, from Gas in (5.5), is the probability that a channel in the set B 
will reopen, and p = 1 - q. The value of a is P ( R  = O I F ) ,  P ( R  = OIA) or P ( R  = O ) ,  
from table 1, depending on whether we condition on the channel being shut or open 
initially, or treat it unconditionally. Some numerical probabilities are given in table 2. 

Thus, although the average is five or six openings, the distribution has quite a long 
tail so that, for example, 15-20% of jumps (depending on initial conditions) lead to 
ten or more openings and about 3% of jumps lead to twenty or more openings. 

(ii) The lengths of openings 

With only one open state, the open-time distributions, given by (2.22), (2.24) 
and (2.27), and whatever the initial conditions, all reduce to the simple exponential 
distribution 

f ( t )  = ( ~ / r ) e - ~ ' ~ ,  t 2 0, (5.7) 

with time constant r = - l /q l l  = 1.092 ms. 
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Table 2. Probability distribution of the number of openings 

r shut initially open initially overall 

(iii) Shut times within bursts 
Shut times within a burst all follow a sojourn in the single open state, so the distri- 

butions (2.30), (2.32) and (2.36), regardless of r ,  n or the initial state of the channel, 
all reduce to the same distribution. From the spectral expansion of exp(Qaat), see 
Colquhoun & Hawkes (1995b), this is a mixture of two exponentials, 

f ( t )  = (al/~l)e-t'T1 + (a2/~2)e-t'T2, (5.8) 

where the time constants, TI = 15.49 ms and r2 = 641.4 ms, are the negative re- 
ciprocal~ of the eigenvalues of QBa and have corresponding areas al = 0.8628 and 
a2 = 0.1372. The mean shut time is 101.4 ms. 

(iv) The first latency distribution 
If the channel is shut initially, the latency to the first opening, assuming there 

is one, again consists of a sojourn in the B states and therefore also has the form 
(5.8), with the same time constants. However, whereas a shut time within a burst of 
openings must start in state 3 (A2R), the first latency is more likely to start in state 
2 (A2D), as is clear from the equilibrium occupancies in (5.4). The areas are now 
al = 0.1319 and a2 = 0.8681, so the slow component predominates (because of the 
long mean lifetime of state 2) and the mean is 558.9 ms. Again, because of the lack 
of correlation in this mechanism, this distribution is obtained from (2.39) or from 
(2.38), regardless of the value of r.  It is illustrated in figure 4a. 

(v) The burst length and the length of the whole activation 
The burst of openings, if there is one, after a jump consists of a sojourn in the 

set of states E = A U B. We see from (2.41) that the probability distribution of its 
length will be a mixture of three exponentials, the time constants being the negative 
reciprocals of the eigenvalues of QEE. Once again, the fact that there is just one open 
state means that we get the same distribution regardless of the conditions at time 
zero. The time constants and corresponding areas are given in table 3; the mean 
burst length is 508 ms. The distribution is illustrated in figure 4b. 

As remarked in 5 2, the total activation time is the same as the burst length if the 
channel is open at time zero. If the channel is shut at time zero, the total activation is 
also a sojourn in the set of states E, but starting in B rather than A. The distribution 
is therefore also a mixture of the same three exponentials, but with different areas. 
These are also shown in table 3. We note that, in this case, one of the areas is 
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Figure 4. Distributions following a jump to zero concentration. (a) shows the distributions of 
first latency (FL) and apparent first latency (AFL), the latter allowing for time interval omission 
with a deadtime of 1 ms; (b) shows the distributions of total length of activation (LA), given that 
the channel is open initially, and apparent length of activation (ALA), given that the channel 
is apparently open initially (this is the same as the distribution of burst length); (c) shows the 
distributions of length of activation (LA) and apparent length of activation (ALA) conditional 
on the channel being shut (or apparently shut) initially. 
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Table 3. Distributions for total activation and burst length after a jump to zero concentration 

length of activation 

area when 
time channel shut area when channel overall burst 
constants initially open initially distribution length 

mean 
sojourn 1067 ms 508 ms 1061 ms 508 ms 

negative and the probability density is zero at the origin, i.e. f (0) = 0, because 
in this situation at least two transitions are needed to complete an activation. It is 
illustrated in figure 4c. The overall distribution of activation time is a mixture of these 
two distributions with weights P(A) /P(R 3 1) and P ( F )  X P ( R  3 1 lF) /P(R 3 1). 

(vi) The total open time per burst 
From (2.50), we find that VAA is the 1 X 1 matrix [-0.154031, so that the distribu- 

tion of the total open time in a burst, conditional on their being one, has the form of 
a single exponential with mean 1/0.15403 = 6.49 ms. This is also equal to the mean 
number of openings, 5.947 from table 1, multiplied by the mean open time, 1.092. 

(vii) The relationship with channel behaviour in the steady state 
At low agonist concentrations, channel openings recorded in the steady state will 

occur in well defined bursts, which consist of periods spent in set E. Since, in this case, 
there is only one open state, the properties of the burst following the initial opening 
are always the same and the distribution of the burst length in the steady state will 
be as in table 3, with a mean burst length of 508 ms and a mean of 5.947 openings 
per burst (as in table 1). For example, at a concentration of X = 0.01 yM, such bursts 
will be separated by a mean interburst shut time (i.e. a shut period containing at 
least one sojourn in the set C) of 1154 S and so will be easily discernible on the 
experimental record. 

(viii) The relationship with macroscopic channel behaviour 
In general, the macroscopic time course of the response to a jump will have k - 1 

exponential components with time constants obtained from the (non-zero) eigenval- 
ues of Q. However, as discussed above, following (2.47), in the case of a jump to zero 
agonist concentration, the eigenvalues of Q itself will be the same as the kE eigen- 
values of QEE, plus the kc eigenvalues of Q c c  The time constants that correspond 
to the eigenvalues of QEE are given in tables 3 and 4. They are the time constants 
for both the burst length and activation length at zero concentration after a step to 
zero (table 3), or at the end of a pulse (table 4). As expected, the time constants for 
the macroscopic time course are the same as these, plus 74 = 212.77 ms, which is the 
negative reciprocal of the non-zero eigenvalue of Qcc. This last component, however, 
has a zero amplitude in the macroscopic relaxation, which is therefore described by 
three (kE) exponential components with time constants of 1.038, 56.11 and 1108 ms. 
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The areas or amplitudes corresponding to these components can be obtained from 
the spectral expansion of either (2.47) or (2.48). 

If we compare (2.48) with (2.45), we see that, in general, the macroscopic time 
course is different from the activation length distribution. However, if, as in our 
example, there is only one open state then the terms which are different in the 
two expressions (namely (-QAA)eb/P(R 2 1) and Nyud) are scalars; thus the two 
expressions are proportional to each other. This means that, following a jump to zero 
concentration, after equilibration with X = 1 mM, the areas (i.e. the charge passed) 
under each exponential component of the macroscopic relaxation are proportional 
to the areas under the overall distribution of the activation length given in table 3 
(e.g. 95.5% of the charge is accounted for by the slowest component). For the step 
to zero concentration following a 50 ms pulse to 1 mM (see below), the macroscopic 
current relaxes with the same time constants and the areas for each component are 
proportional to the areas under the overall distribution of the activation length given 
in table 4 (e.g. 68.7% of the charge is accounted for by the slowest component). 

Notice that the burst length distribution, which is all that can be inferred from 
low-concentration steady state records, does not give a good indication of what the 
macroscopic relaxation will look like. This is because, in this example, the first latency 
can be quite long, so its contribution to the activation length cannot be ignored. In 
cases where the first latency is very short (as for acetylcholine-activated channels at 
the neuromuscular junction), the burst length measured in low-concentration steady 
state records gives a good indication of the appearance of macroscopic relaxations. 
This question is considered further in Colquhoun & Hawkes (1995a). 

(ix) The eSfect of time interval omission 
As mentioned at the end of 5 4, the theory allowing for time interval omission is 

quite complicated for the jump from non-zero concentration. We therefore give no 
details, but some results have been calculated using the methods of Merlushkin & 
Hawkes (1995b) and are presented graphically in figure 4. We will assume a deadtime 
of [ = 1 ms which we have chosen to be quite long, compared with what is normally 
experimentally possible, so as to emphasize the difference in the results compared 
with the ideal ([ = 0) theory that we have already dealt with. The initial conditions 
may be partially summarized by saying that the probability of the channel being 
'apparently shut' at t = 0 is 0.99308 and that of being 'apparently open' is 0.00692. 
Figure 4a shows the distribution of apparent first latency assuming the channel is 
apparently shut at t = 0 and that there is at least one subsequent apparent opening. 
Compared with the results without time interval omission there is a relative lack of 
short latencies, presumably due to missing some short openings early on. 

The distribution of total apparent length of activation conditional on the channel 
being apparently open initially is shown in figure 4b. This distribution has quite a 
few more activations of less than 5 ms, compared with the ideal case; this is pre- 
sumably due to apparent premature termination of the activation because of missing 
subsequent short open times after the first one. The shape is also interesting, being 
almost uniform between 0 and [, then decaying rapidly. The first apparent open- 
ing must exceed [, but only that portion which occurs after t = 0 is recorded, so 
this early part is (almost) what one would expect to get from a classical recurrence 
time distribution. In this case, apparent length of activation is the same as apparent 
burst length, so the distribution is the same; but note that, unlike the ideal case, 
the apparent burst length distribution will be different if the channel is apparently 
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shut initially because, for example, the apparent burst must then be of at least J in 
duration. 

Figure 4c shows the distribution of apparent length of activation, conditional on 
being apparently shut initially and having at least one apparent opening. The results 
do not differ much from the ideal case, but there is some loss of short activations. 
This is because some short actual activations will contain just one or two short 
open times which may not be observed because of time interval omission, so there is 
apparently no response at  all to the jump: remember, this distribution is conditional 
on observing at least one open time. Another reason is that the apparent length of 
an activation must be at least J if the channel is apparently shut at time t = 0. 

( b )  Response to a pulse of agonist-recording from the end of the pulse 
We now suppose that a pulse of agonist is applied for a period of 50 ms. We have 

made this quite long so as to emphasize the within-pulse behaviour, which we do 
later-here we are concerned with what happens after the pulse. The transition rate 
matrix applying during the pulse is Q', from (5.2), while the transition rate matrix 
QO, from (5.3), applies both before and after the pulse. We present results without 
time interval omission only. 

If zero concentration has been held for long enough before the pulse for the channel 
to reach equilibrium, the initial vector in equation (3.1) can be taken as p(0) = 
[0 0 0 0 l], giving a new initial vector p(0) - p(T)  at the end of the pulse. This is 

Clearly, the pulse of agonist is not long enough to reach equilibrium under the Q1 
matrix regime. Compared with (5.4), the channel is more likely to be found in the 
open state, or in the set C; the most notable difference, however, is that within the 
set B it is now much more likely to be found in state 3 (A2R) rather than state 2 
&D). 

When we record from the end of the pulse, it is equivalent to a single jump using 
this modified initial vector, so the theory of 5 2 still applies. The transition matrices 
given in (5.5) remain unaltered and the special nature of GBA and GBc, having 
identical rows, means that the big change in the initial probability of state 2 versus 
state 3 makes no difference at all to the distribution of the number of openings. The 
other relatively minor changes in p(0) alter probabilities in tables 1 and 2 by at most 3 
in the third decimal place, while the means change by at most 2 in the second decimal 
place (we do not, therefore, present details). The probabilities and mean conditional 
on the channel being open initially are, of course, unaltered ('initially' now means 
'at the end of the pulse'). 

Because there is only one open state, this is true of the distribution of any char- 
acteristic which depends only on behaviour following the first opening. Thus the 
distributions of open times, shut times within bursts, burst length and total open 
time per burst are all identical with those given previously. 

(i) First latency and length of activation 
The big change in the initial probabilities does have a significant effect on the 

distribution of first latency and the total activation time, which includes it. When 
the channel is shut initially, the distribution of first latency still has the form of 
a mixture of two exponentials with time constants 15.49 ms and 641.4 ms, but the 
corresponding areas are now 0.5739 and 0.4261. Compared with the first latency 
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Figure 5. Distributions following a jump from zero concentration. (a) shows the distributions of 
open times (A) and apparent open times (AA), the latter allowing for time interval omission 
with a deadtime of l ms; (b) shows the distributions of first latency (FL) and apparent first 
latency (AFL); (c) shows the distributions of shut times (other than the first latency), the 
actual distribution (F) and the apparent distribution (AF).  
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Table 4. Distributions of the length of activations after a pulse 

time area when channel overall 
constants shut initially distribution 

mean 
sojourn 790 ms 779 ms 

distribution discussed earlier, this represents a big shift to the faster component 
with a resulting reduction in the mean to 282.2 ms. 

The new results for the distribution of total activation time are given in table 4. 
The time constants are the same as in table 3, but the areas and means are very 
different. As with first latency, there is a reduction in mean, because there is a smaller 
chance of spending a long initial period in state 2 (AzD) .  When the channel is open 
initially, the length of the activation is the same as the burst length so that, as stated 
above, there is no change in that distribution. 

( c )  Single jump from zero concentration 

We now suppose that there is zero agonist concentration before time zero, at which 
point it jumps to  a concentration of 1 mM. We take the initial probability to  be the 
equilibrium vector of the matrix Q O ,  i.e. p(0) = [0 0 0 0 l], so the channel is certain to 
be in state 5. The transition rate matrix Q1 then applies after the jump. The theory 
allowing for time interval omission is given in equations (4.9)-(4.13). As before, we 
assume a deadtime = 1 ms. The results for the ideal theory, J = 0, are easily found 
as a special case of the above equations. 

With only one open state, the true open time distribution is a simple exponential 
with mean 1.09 ms, exactly the same as for the jump to zero concentration discussed 
earlier. Apparent open times, allowing for time interval omission, have a mean of 
1.167 ms. The distribution is no longer of simple exponential form but, for t > 3J, it 
is well approximated by 

f (t) = a(l /~)e-("-" '~,  (5.10) 

with time constant r = 1.175 and 'area' a = 0.9913. These two distributions are 
shown in figure 5a. Note that the apparent open time is always greater than J, but 
the shape of the distribution is otherwise not that much different (because shut times 
are not often missed). 

The true shut time distributions are governed, essentially, by the function 
exp(Q&,t). The spectral expansion of this implies that they must have the form 
of mixtures of four exponentials with time constants the negative reciprocals of the 
eigenvalues of Q&. Because of the lack of correlation in this simple mechanism, all 
shut times following the first opening have the same distribution, which is different 
from that of the first latency. 

The distribution of apparent first latency is not a mixture of exponentials. From 
(4.9), we see that it depends on ,R(t), the asymptotic expansion of which (see 
Appendix) means that, for t > 2J, the distribution can be well approximated by a 
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Table 5. Areas for exponential components of shut t imes after a jump from zero concentration 
(Areas and time constants for the apparent distributions relate to the asymptotic approximations 
in (5.11)-(5.12); results for the actual distributions are exact) 

actual (< = 0) apparent ( E  = 1 ms) 

first 
latency 

7- (ms) a 

0.100 0.0047 
0.200 -0.0188 
18.16 0.8522 
659.3 0.1619 

other 
shuttings 

a 7. (ms) 

4.1 X 10-' 0.100 
1.8 X 1 0 - ~  0.200 

0.8328 36.73 
0.1618 824.1 

first other 
latency shuttings 

a a 

0.0004 -2.5 X 10-l0 
-0.0067 -6.5 X 10 -~  

0.6642 0.6528 
0.3412 0.3471 

mean 122.2 ms 121.9 ms mean 305.6 ms 311.1 ms 

mixture of four exponentials 

The distributions of true and apparent first latencies are compared in figure 5b. 
Unlike the apparent first latency, all apparent shut times after the apparent first 

opening must exceed E in duration, see discussion following (4.13). Their distribution 
depends on FR(t -J), so the asymptotic expansion of this which is used for U = t -J > 
2J means that, for t > 3E, the shut time distribution from (4.13) is well approximated 
by 

4 

f (t) CS at ( l / ~ ~ ) e - ( ~ - / ) / ~ ~ ,  (5.12) 
2=1 

where the time constants are the same as in (5.11) but the areas, a,, are different. 
The lack of correlation in this example implies that this distribution is the same 

for all n. 
The distributions of true and apparent shut times (other than the first latency) 

are compared in figure 5c. The time constants and areas discussed above are given 
in table 5, together with means. 

Although there are four components, two of them are rather fast and have negli- 
gible areas, except for the first latency where they modify the behaviour for small t. 
Apart from that there is not very much difference between the distribution of first 
latency and that of other shut times, compare figures 5b and 5c. There is, however, a 
big difference between the distributions of real and apparent shut times, with means 
of about 120 and 310 ms, respectively. This is clearly mainly due to missing a few 
short open times, so that the neighbouring shut times get concatenated to create a 
long apparent shut time. Thus, the two slow asymptotic time constants of the ap- 
parent distribution are somewhat larger than those of the actual distribution, but 
the two short ones are identical, to the degree of accuracy recorded. 

Note that, except for first latency, the distributions obtained here (actual or ap- 
parent) are the same as would be obtained from equilibrium recording under the 
transition matrix Q'. This is due to the lack of correlation in this mechanism. 
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Figure 6. Distributions of first latency (FL) and apparent first latency (AFL), deadtime 
5' = 1 ms, in response to a 50 ms pulse of agonist. 

( d )  Response to a pulse: recording from the beginning of the pulse 

As before, we consider a 50 ms pulse during which agonist concentration is 1 mM 
and so transition rate matrix Q1 applies. The transition rate matrix Q0 applies before 
and after the pulse, when zero concentration obtains, and the initial probability 
vector is p(0) = [0 0 0 0 l], so the channel is known to be shut initially. This time we 
start recording from the beginning of the pulse instead of the end, so that within- 
pulse activity can be studied. The theory incorporating time interval omission, again 
taking = 1 ms, is given in equations (4.1)-(4.8) and the ideal theory, when [ = 0, 
is dealt with in equations (3.2)-(3.11) and (3.14)-(3.27). 

The probabilities of displaying a t  least one opening, or at least one apparent 
opening, after t = 0 are 

P (R  2 1) = 0.96553 and P ( R  2 l) = 0.83472, 

respectively, so about 13% of bursts of activity would be missed because of time 
interval omission. 

The distributions of first latency and apparent first latency are shown in figure 6. 
Because there is quite a high probability of the first opening occurring before the 
end of the pulse (i.e. before 50 ms), they are quite similar to  what happens in the 
case of a single jump from zero concentration (compare with figure 5b). 

Figure 7a shows the distributions of length of activation and apparent length of 
activation. Clearly there is a dramatic difference in behaviour before and after the 
end of the pulse. The distribution of apparent length of activation is shifted towards 
the origin, compared with the ideal case, because of missing some openings in the 
tail end of the true activation. As these distributions look quite strange, and the 
mathematics is quite complicated, we checked them by simulation. The results in 
figure 7b show that the simulated and theoretical distributions compare well. 

Finally, the distribution of burst length, in the ideal case, is shown in figure 8. The 
steep initial part reflects the contribution when a burst consists of a single opening. 
If there are two or more openings, the burst is considerably lengthened, because the 
shut times tend to be relatively long, and the curve rises then tails away as it passes 
the end of the pulse (50 ms). The burst length allowing for time interval omission is 
even more complicated and has not been attempted. 
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Figure 7. Distributions of length of activation (LA) and apparent length of activation (ALA), 
deadtime = 1 ms, in response to a 50 ms pulse of agonist. ( a )  shows the theoretical distribu- 
tions; (b) shows the results of simulation superimposed on the theoretical curves. 

Figure 8. Distribution of actual burst lengths in response to a 50 ms pulse of agonist. 
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6. Discussion 

In all but the simplest cases, it is unlikely that single channel records at equilibrium 
will contain enough information to  identify a reasonable mechanism. Exploiting the 
extra information that is present in non-stationary recordings can provide valuable 
insights. It will often, therefore, be important to  measure the properties of macro- 
scopic currents, and especially single channels, that are elicited by a step, or a pulse, 
of agonist concentration (or any other variable that affects channel activity). 

Channels that are present in synapses will, in real life, never be in a steady state 
during synaptic transmission when they are exposed only briefly to  a pulse of agonist 
concentration. The time course of the agonist concentration is hard to determine 
precisely, but it is not likely to  take the form of the rectangular pulse which is assumed 
in 5 3. However, the characteristics of channels that are elicited by a brief pulse are 
unlikely to  be much influenced by the exact shape of the pulse when the pulse is brief 
relative to  the (average) duration of the events that it elicits, since the concentration 
will be zero for most of the time during the recording. This is a rationale for the 
attempts that have been made to  mimic synaptic activity by application of brief 
rectangular pulses of agonists to  ion channels (see Introduction). It is now possible to  
generate sub-millisecond pulses which are not far from rectangular. The measurement 
of non-stationary macroscopic currents by this method is now a relatively routine 
business. This approach is usually the only way to measure single channel activity 
a t  zero concentration, since at equilibrium there will (in most cases) be no openings 
to measure. 

We note that an interesting result to emerge from our numerical example is that 
the time course of the macroscopic current following a jump to  zero concentration is 
proportional to the probability density of the total activation time, in the case where 
there is only one open state. 

The biggest practical problem is still the fact that in order to  measure quantities 
such as the latency to  the first channel opening, it is necessary to know the exact 
number of channels in a membrane patch, and preferably there should be only one 
(as is assumed throughout this paper). This is hard to achieve in practice, but it is 
not impossible (see Wyllie et  al. 1997). 

The most obvious quantity to  measure is the latency from the moment at which 
the jump, or pulse, is applied to the time when a channel first opens. Indeed, for 
mechanisms that show no correlations (see Fredkin et  al. 1985; Colquhoun & Hawkes 
1987), this may be the only thing that will differ from equilibrium recordings. In the 
case, for example, of a single jump to  a finite agonist concentration, all the other 
sorts of distributions that are listed here (apart from the total activation length 
which includes the first latency) will be the same as in equilibrium recordings (made 
a t  the post-jump concentration). For example, the mean length of the nth opening 
after a jump will be the same (the equilibrium value) for any n if there are no 
correlations (e.g. Colquhoun & Hawkes 1987). The same is likely to be true, to  a 
good approximation, for very brief pulses, for which the structure of the burst of 
openings elicited by the pulse is expected to be very similar to the burst structure 
recorded at equilibrium in very low agonist concentrations (low enough that the 
channel is close to  the limiting behaviour expected as concentration approaches the 
post-pulse value of zero). 

In reality, however, most channels do seem to show correlations, in cases where 
it has been measured (e.g. Colquhoun & Sakmann 1985; Ball et al. 1989; Gibb & 
Colquhoun 1992). In this case, all the distributions that are listed here will provide 
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useful information about the nature of the mechanism. This information is related 
to, but not identical with, that found by measuring correlations or conditional dis- 
tributions in equilibrium records (e.g. Fredkin et al. 1985; McManus et al. 1985; 
Colquhoun & Hawkes 1987; Ball et al. 1989; Colquhoun et al. 1996). 

In this paper, we have given general solutions to the problems of single jumps 
and pulses, with particular attention to  the problems that arise when predicting the 
consequences of a jump to zero agonist concentration. In the ideal case of perfect 
time resolution, the distributions can be found by similar methods to those used 
for equilibrium records (see, for example, Colquhoun & Hawkes 1995b) and most 
of them are no more difficult. An exception is the distribution of the length of the 
burst of openings which follows a pulse; even in the ideal case this gets a bit more 
complicated than any equilibrium distribution, as shown in (3.19)-(3.27). 

Some of the relevant problems can also be solved with exact allowance for the 
limited resolution of the recording system, as outlined in $4. However, the results 
get a good deal more complicated in this case and here we have discussed only 
the simplest cases, the distributions of the apparent first latency, the probability of 
observing a t  least one apparent opening and the distribution of the apparent length 
of the whole activation. See Merlushkin & Hawkes (1995~)  for details. 

The results given here should be useful as a basis for the interpretation of more 
complex experiments. For example, Colquhoun & Hawkes (1995~) considered the 
interpretation of experiments in which macroscopic responses to  a pulse of agonist 
concentration were measured after pre-exposure to a longer prepulse of a low ago- 
nist concentration (Lin & Stevens 1994). The size of the response to the test pulse 
depended on whether single channel openings were observed during the prepulse or 
not. In this problem, the probability that there will be no channel openings during 
the prepulse is just the probability that the first latency following the step to  the 
prepulse concentration is longer than the length of the prepulse and so can be found 
from the first latency distribution given here (following (3.13)). The treatment of 
Colquhoun & Hawkes (1995~) could be extended to allow for missed events using the 
approach outlined here: for example, the distribution of apparent first latency given 
in (4.1) could be integrated numerically to give the probability that there will be no 
detectable channel openings during the prepulse. 

A.G.H. acknowledges the support of the Wellcome Trust, which contributed to this work. D.C. 
was supported by the Medical Research Council and the Wellcome Trust. 

Appendix A. 

Formulae for the matrix function FR(u). 
The starting point is the representation of the matrix Q in terms of the spectral 

matrices Ai so that, assuming the matrix -Q has distinct eigenvalues Xi,  

Let AiFn be the FA partition of Ai  and define 
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Then FR(u) is given by 

where 
k k 

NO (U) = C C ~ O O  exp(-&u), NI (U) = C ( c i 1 0  + C i i ~ u )  exp( -h i~ )  (A 4) 
i=l i=l 

and the matrices Ciml are given recursively by 

c i 0 0  = AFT, ci10 = C ( ~ i ~ j o 0  + DjCioo)/(Aj - h )  1 Ci11 = Dici00. (A 5) 
j#i 

Approximate evaluation of FR(u) for large U. 

These results can be extended for values of u 2 2(, but we use instead an asymp- 
totic form which has been found in practice to  be very accurate (even for smaller 
values of u than this, in some cases). The asymptotic behaviour of F ~ ( u )  depends 
on the values of s which render singular the matrix W ( s )  defined as 

where 
H ( s )  = QFF + QFA(SI - QAA)-~S>A(S)QAF (A 7) 

and 
S > ~ ( S )  = I - exp(-(sI - Q A A ) ~ ,  (A 8) 

provided s is not an eigenvalue of QnA so that ( s I  - QAA)-l exists. In other words, 
we are interested in the roots of the determinantal equation 

Models of ion channels are normally assumed to  obey the principle of microscopic 
reversibility, in the absence of external energy supply (see Colquhoun & Hawkes 1982, 
pp. 24-25). Under these conditions, Jalali & Hawkes (1992) proved that det W ( s )  = 0 
has exactly kF real roots, denoted si. If these are distinct, then, as u -t oo, 

where 

and ci, ri are the right and left (column and row) eigenvectors of H ( s i )  corresponding 
to the root si. The matrix derivative in the above results can be evaluated as 

where GTqF(s) is given in equations (1.5). 

Laplace transform of FR(u). 
Hawkes et al. (1990) showed that the Laplace transform of FR(u), FR*(s) is given 

by 
Q* (S) = [V;(s)]-l [sI - QFy]-', 

where 
V; (S) = I - (S) S>, (S) GLF (S). 
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Distributions of apparent shut times under a homogeneous regime with transition 
rate matrix Q are determined by the semi-Markov matrix function of probability 
densities 

e G ~ ~ ( t )  = FR(t - E. )QFA~xP(QAAE. ) ;  (A 15) 
compare this with (4.10). This is both pre-multiplied and post-multiplied by appro- 
priate vectors to obtain a probability density; see, for example, (4.12). "GFA(t) has 
Laplace transform 

To obtain the corresponding mean apparent shut time, we simply replace the 
matrix function "GFA(t) in the formula for the density by the constant matrix MFA, 
which is given by 

where 

The results (A 17)-(A 19) are, mutatis mutandis, essentially those of Colquhoun et 
al. (1996, equation (3.6)). Here, as elsewhere, we employ the simplifying notational 
convention of removing the asterisk when setting the Laplace parameter to zero so 
that, for example, 

SAA = S ~ A ( O ) .  
Similar results may be obtained for apparent open times by reversing the roles of 

F and A. These results are used at the end of 5 4 to obtain matrices M$A and MAF, 
which are calculated as described here, but the superscript 1 denotes that everything 
is calculated with respect to the particular transition rate matrix Q1 in place of Q .  
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